These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8847343)

  • 1. Electron transfer in ruthenium-modified proteins.
    Bjerrum MJ; Casimiro DR; Chang IJ; Di Bilio AJ; Gray HB; Hill MG; Langen R; Mines GA; Skov LK; Winkler JR
    J Bioenerg Biomembr; 1995 Jun; 27(3):295-302. PubMed ID: 8847343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron tunneling in proteins: coupling through a beta strand.
    Langen R; Chang IJ; Germanas JP; Richards JH; Winkler JR; Gray HB
    Science; 1995 Jun; 268(5218):1733-5. PubMed ID: 7792598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium bisbipyridine complexes of horse heart cytochrome c: characterization and comparative intramolecular electron-transfer rates determined by pulse radiolysis and flash photolysis.
    Luo J; Reddy KB; Salameh AS; Wishart JF; Isied SS
    Inorg Chem; 2000 May; 39(11):2321-9. PubMed ID: 12526492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron tunneling in single crystals of Pseudomonas aeruginosa azurins.
    Crane BR; Di Bilio AJ; Winkler JR; Gray HB
    J Am Chem Soc; 2001 Nov; 123(47):11623-31. PubMed ID: 11716717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional electron transfer in ruthenium-modified horse heart cytochrome c.
    Bechtold R; Kuehn C; Lepre C; Isied SS
    Nature; 1986 Jul 17-23; 322(6076):286-8. PubMed ID: 3016549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer in cytochrome c depends upon the structure of the intervening medium.
    Karpishin TB; Grinstaff MW; Komar-Panicucci S; McLendon G; Gray HB
    Structure; 1994 May; 2(5):415-22. PubMed ID: 8081757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protein-folding speed limit: intrachain diffusion times set by electron-transfer rates in denatured Ru(NH3)5(His-33)-Zn-cytochrome c.
    Chang IJ; Lee JC; Winkler JR; Gray HB
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3838-40. PubMed ID: 12646702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining photoinduced energy transfer in Pseudomonas aeruginosa azurin.
    Tobin PH; Wilson CJ
    J Am Chem Soc; 2014 Feb; 136(5):1793-802. PubMed ID: 24467236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins.
    Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I
    Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron flow through nitrotyrosinate in Pseudomonas aeruginosa azurin.
    Warren JJ; Herrera N; Hill MG; Winkler JR; Gray HB
    J Am Chem Soc; 2013 Jul; 135(30):11151-8. PubMed ID: 23859602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of ruthenium-cytochrome c derivatives to measure electron transfer to cytochrome c peroxidase.
    Liu RQ; Geren L; Anderson P; Fairris JL; Peffer N; McKee A; Durham B; Millet F
    Biochimie; 1995; 77(7-8):549-61. PubMed ID: 8589066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein electron transfer rates set by the bridging secondary and tertiary structure.
    Beratan DN; Betts JN; Onuchic JN
    Science; 1991 May; 252(5010):1285-8. PubMed ID: 1656523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ligand substitution on long-range electron transfer in azurins.
    Farver O; Jeuken LJ; Canters GW; Pecht I
    Eur J Biochem; 2000 Jun; 267(11):3123-9. PubMed ID: 10824096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron tunneling through proteins.
    Gray HB; Winkler JR
    Q Rev Biophys; 2003 Aug; 36(3):341-72. PubMed ID: 15029828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in ruthenium-modified spinach plastocyanin mutants.
    Sigfridsson K; Ejdebäck M; Sundahl M; Hansson
    Arch Biochem Biophys; 1998 Mar; 351(2):197-206. PubMed ID: 9514646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer between cytochrome c and metal hexacyanide complexes. Effect of thermodynamic driving force on the electron transfer rate.
    Cho KC; Chu WF; Choy CL; Che CM
    Biochim Biophys Acta; 1989 Jan; 973(1):53-8. PubMed ID: 2536552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase.
    Pan LP; Hibdon S; Liu RQ; Durham B; Millett F
    Biochemistry; 1993 Aug; 32(33):8492-8. PubMed ID: 8395206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic engineering of redox donor sites: measurement of intracomplex electron transfer between ruthenium-65-cytochrome b5 and cytochrome c.
    Willie A; Stayton PS; Sligar SG; Durham B; Millett F
    Biochemistry; 1992 Aug; 31(32):7237-42. PubMed ID: 1324708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed azurins show lower reorganization free energies for intraprotein electron transfer.
    Farver O; Marshall NM; Wherland S; Lu Y; Pecht I
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10536-40. PubMed ID: 23759745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a ruthenium-cytochrome c derivative to measure electron transfer to the initial acceptor in cytochrome c oxidase.
    Geren LM; Beasley JR; Fine BR; Saunders AJ; Hibdon S; Pielak GJ; Durham B; Millett F
    J Biol Chem; 1995 Feb; 270(6):2466-72. PubMed ID: 7852307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.