These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 8847635)
1. Effects of Ca2+ and K+ channel blockers on nerve impulses recorded from guinea-pig postganglionic sympathetic nerve terminals. Brock JA; Cunnane TC J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):389-402. PubMed ID: 8847635 [TBL] [Abstract][Full Text] [Related]
2. K+ and Ca2+ channel blockers may enhance or depress sympathetic transmitter release via a Ca(2+)-dependent mechanism "upstream" of the release site. Stjärne L; Stjärne E; Msghina M; Bao JX Neuroscience; 1991; 44(3):673-92. PubMed ID: 1661385 [TBL] [Abstract][Full Text] [Related]
3. A calcium-dependent component of the action potential in sympathetic nerve terminals in rat tail artery. Astrand P; Stjärne L Pflugers Arch; 1991 Mar; 418(1-2):102-8. PubMed ID: 2041716 [TBL] [Abstract][Full Text] [Related]
4. Ionic currents in single smooth muscle cells from the ureter of the guinea-pig. Imaizumi Y; Muraki K; Watanabe M J Physiol; 1989 Apr; 411():131-59. PubMed ID: 2482352 [TBL] [Abstract][Full Text] [Related]
5. Omega-conotoxin GVIA-resistant neurotransmitter release from postganglionic sympathetic nerves in the guinea-pig vas deferens and its modulation by presynaptic receptors. Smith AB; Cunnane TC Br J Pharmacol; 1998 Jan; 123(2):167-72. PubMed ID: 9489603 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological evidence that tetraethylammonium-sensitive, iberiotoxin-insensitive K+ channels function as a negative feedback element for sympathetic neurotransmission by suppressing omega-conotoxin-GVIA-insensitive Ca2+ channels in the relaxation of rabbit facial vein. Tanaka Y; Akutsu A; Tanaka H; Horinouchi T; Tsuru H; Koike K; Shigenobu K Naunyn Schmiedebergs Arch Pharmacol; 2003 Jan; 367(1):35-42. PubMed ID: 12616339 [TBL] [Abstract][Full Text] [Related]
7. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells. Devor DC; Frizzell RA Am J Physiol; 1993 Nov; 265(5 Pt 1):C1271-80. PubMed ID: 7694492 [TBL] [Abstract][Full Text] [Related]
8. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. Nedergaard S; Flatman JA; Engberg I J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714 [TBL] [Abstract][Full Text] [Related]
9. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells. Zhang L; Bonev AD; Nelson MT; Mawe GM Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489 [TBL] [Abstract][Full Text] [Related]
10. Voltage-gated ionic currents in smooth muscle cells of guinea pig proximal colon. Vogalis F; Lang RJ; Bywater RA; Taylor GS Am J Physiol; 1993 Mar; 264(3 Pt 1):C527-36. PubMed ID: 8384782 [TBL] [Abstract][Full Text] [Related]
11. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells. Ishikawa T; Hume JR; Keef KD J Physiol; 1993 Aug; 468():379-400. PubMed ID: 7504729 [TBL] [Abstract][Full Text] [Related]
12. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. Viana F; Bayliss DA; Berger AJ J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136 [TBL] [Abstract][Full Text] [Related]
13. Diversity of channels involved in Ca(2+) activation of K(+) channels during the prolonged AHP in guinea-pig sympathetic neurons. Martínez-Pinna J; Davies PJ; McLachlan EM J Neurophysiol; 2000 Sep; 84(3):1346-54. PubMed ID: 10980007 [TBL] [Abstract][Full Text] [Related]
14. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Pape HC; Driesang RB J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193 [TBL] [Abstract][Full Text] [Related]
15. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R; Hiley CR Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [TBL] [Abstract][Full Text] [Related]
16. Characterization of membrane currents in single smooth muscle cells from the guinea-pig gastric antrum. Noack T; Deitmer P; Lammel E J Physiol; 1992; 451():387-417. PubMed ID: 1383498 [TBL] [Abstract][Full Text] [Related]
17. Ionic currents and inhibitory effects of glibenclamide in seminal vesicle smooth muscle cells. Sadraei H; Beech DJ Br J Pharmacol; 1995 Aug; 115(8):1447-54. PubMed ID: 8564204 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of the effects of 4-aminopyridine and tetraethylammonium on neuro-effector transmission in the guinea-pig vas deferens. Ito Y; Korenaga S; Tajima K Br J Pharmacol; 1980 Jul; 69(3):453-60. PubMed ID: 6249434 [TBL] [Abstract][Full Text] [Related]
19. Two different presynaptic calcium currents in mouse motor nerve terminals. Penner R; Dreyer F Pflugers Arch; 1986 Feb; 406(2):190-7. PubMed ID: 2421238 [TBL] [Abstract][Full Text] [Related]
20. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. Storm JF J Physiol; 1987 Apr; 385():733-59. PubMed ID: 2443676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]