These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 8848173)

  • 1. Neural dynamics in cortex-striatum co-cultures--II. Spatiotemporal characteristics of neuronal activity.
    Plenz D; Aertsen A
    Neuroscience; 1996 Feb; 70(4):893-924. PubMed ID: 8848173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural dynamics in cortex-striatum co-cultures--I. anatomy and electrophysiology of neuronal cell types.
    Plenz D; Aertsen A
    Neuroscience; 1996 Feb; 70(4):861-91. PubMed ID: 8848172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures.
    Plenz D; Kitai ST
    J Neurosci; 1998 Jan; 18(1):266-83. PubMed ID: 9412506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons.
    Wilson CJ; Goldberg JA
    J Neurophysiol; 2006 Jan; 95(1):196-204. PubMed ID: 16162828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo.
    Sharott A; Doig NM; Mallet N; Magill PJ
    J Neurosci; 2012 Sep; 32(38):13221-36. PubMed ID: 22993438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo.
    Mallet N; Le Moine C; Charpier S; Gonon F
    J Neurosci; 2005 Apr; 25(15):3857-69. PubMed ID: 15829638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity.
    Hjorth J; Blackwell KT; Kotaleski JH
    J Neurosci; 2009 Apr; 29(16):5276-86. PubMed ID: 19386924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):39-55. PubMed ID: 8783228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex.
    Kaneko K; Koyanagi Y; Oi Y; Kobayashi M
    Neuroscience; 2016 Dec; 339():548-560. PubMed ID: 27746347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.
    Kulik JM; Pawlak AP; Kalkat M; Coffey KR; West MO
    Brain Res; 2017 Feb; 1657():101-108. PubMed ID: 27914882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro.
    Blackwell KT; Czubayko U; Plenz D
    J Neurosci; 2003 Oct; 23(27):9123-32. PubMed ID: 14534246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro.
    Gustafson N; Gireesh-Dharmaraj E; Czubayko U; Blackwell KT; Plenz D
    J Neurophysiol; 2006 Feb; 95(2):737-52. PubMed ID: 16236782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex.
    Thomson AM; West DC; Hahn J; Deuchars J
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):81-102. PubMed ID: 8910198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex.
    Schwindt P; O'Brien JA; Crill W
    J Neurophysiol; 1997 May; 77(5):2484-98. PubMed ID: 9163371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro.
    Michelson HB; Wong RK
    J Physiol; 1994 May; 477(Pt 1):35-45. PubMed ID: 8071887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex.
    Charpier S; Mahon S; Deniau JM
    Neuroscience; 1999; 91(4):1209-22. PubMed ID: 10391430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex autonomous firing patterns of striatal low-threshold spike interneurons.
    Beatty JA; Sullivan MA; Morikawa H; Wilson CJ
    J Neurophysiol; 2012 Aug; 108(3):771-81. PubMed ID: 22572945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.