These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8849457)

  • 21. Echocardiographic "smoke" is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces.
    Merino A; Hauptman P; Badimon L; Badimon JJ; Cohen M; Fuster V; Goldman M
    J Am Coll Cardiol; 1992 Dec; 20(7):1661-8. PubMed ID: 1452941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator.
    Yu FT; Cloutier G
    J Acoust Soc Am; 2007 Jul; 122(1):645-56. PubMed ID: 17614521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ measurements of Doppler power vs. flow turbulence intensity in red cell suspensions.
    Wu SJ; Shung KK; Brasseur JG
    Ultrasound Med Biol; 1998 Sep; 24(7):1009-21. PubMed ID: 9809635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unified approach to modeling the backscattered Doppler ultrasound from blood.
    Mo LY; Cobbold RS
    IEEE Trans Biomed Eng; 1992 May; 39(5):450-61. PubMed ID: 1526636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finding the peak velocity in a flow from its Doppler spectrum.
    Vilkomerson D; Ricci S; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2079-88. PubMed ID: 24081256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Normalizing fractional moving blood volume estimates with power Doppler US: defining a stable intravascular point with the cumulative power distribution function.
    Rubin JM; Bude RO; Fowlkes JB; Spratt RS; Carson PL; Adler RS
    Radiology; 1997 Dec; 205(3):757-65. PubMed ID: 9393532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of red cell clustering and anisotropy on ultrasound blood backscatter: a Monte Carlo study.
    Savéry D; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):94-103. PubMed ID: 15742565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound backscatter at 30 MHz from human blood: influence of rouleau size affected by blood modification and shear rate.
    van der Heiden MS; de Kroon MG; Bom N; Borst C
    Ultrasound Med Biol; 1995; 21(6):817-26. PubMed ID: 8571469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.
    Alonso C; Pries AR; Gaehtgens P
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Aug; 54(6):1480-7. PubMed ID: 24794508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of hematocrit, shear rate, and turbulence on ultrasonic Doppler spectrum from blood.
    Shung KK; Cloutier G; Lim CC
    IEEE Trans Biomed Eng; 1992 May; 39(5):462-9. PubMed ID: 1526637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound scattering from concentrated suspensions of aggregated red cells in shear flow.
    Haider L; Snabre P; Boynard M
    Clin Hemorheol Microcirc; 2004; 30(3-4):345-52. PubMed ID: 15258365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Red cell aggregation as a cause of blood-flow echogenicity.
    Sigel B; Machi J; Beitler JC; Justin JR
    Radiology; 1983 Sep; 148(3):799-802. PubMed ID: 6878705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit.
    Fontaine I; Cloutier G
    J Acoust Soc Am; 2003 May; 113(5):2893-900. PubMed ID: 12765406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power.
    Qin Z; Durand LG; Allard L; Cloutier G
    Ultrasound Med Biol; 1998 May; 24(4):503-11. PubMed ID: 9651960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.
    Huang CC; Chou HL; Chen PY
    Ultrasound Med Biol; 2015 Feb; 41(2):565-73. PubMed ID: 25542489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in vitro study of the effects of Doppler angle, fibrinogen, and hematocrit on ultrasonic Doppler power.
    Wu SJ; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):197-204. PubMed ID: 18238414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo.
    Koutsiaris AG; Tachmitzi SV; Batis N; Kotoula MG; Karabatsas CH; Tsironi E; Chatzoulis DZ
    Biorheology; 2007; 44(5-6):375-86. PubMed ID: 18401076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo hemodynamic evaluation based on transverse Doppler measurements of blood velocities and vessel diameter.
    Wan M; Gong X; Qian M
    IEEE Trans Biomed Eng; 1999 Sep; 46(9):1074-80. PubMed ID: 10493070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.