BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8849816)

  • 1. A model of blast overpressure injury to the lung.
    Stuhmiller JH; Ho KH; Vander Vorst MJ; Dodd KT; Fitzpatrick T; Mayorga M
    J Biomech; 1996 Feb; 29(2):227-34. PubMed ID: 8849816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for predicting primary blast lung injury.
    MacFadden LN; Chan PC; Ho KH; Stuhmiller JH
    J Trauma Acute Care Surg; 2012 Nov; 73(5):1121-9. PubMed ID: 22914084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximal exercise performance-impairing effects of simulated blast overpressure in sheep.
    Januszkiewicz AJ; Mundie TG; Dodd KT
    Toxicology; 1997 Jul; 121(1):51-63. PubMed ID: 9217315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials.
    Cooper GJ; Townend DJ; Cater SR; Pearce BP
    J Biomech; 1991; 24(5):273-85. PubMed ID: 2050704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment.
    Axelsson H; Yelverton JT
    J Trauma; 1996 Mar; 40(3 Suppl):S31-7. PubMed ID: 8606417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress amplification effect of lung.
    Zhou H; Ma G
    Med Hypotheses; 2010 Jan; 74(1):37-8. PubMed ID: 19747779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modeling of thoracic response to blast.
    Stuhmiller JH; Chuong CJ; Phillips YY; Dodd KT
    J Trauma; 1988 Jan; 28(1 Suppl):S132-9. PubMed ID: 3339675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of blast lung injury in sheep.
    Gibbons MM; Dang X; Adkins M; Powell B; Chan P
    J Biomech Eng; 2015 Apr; 137(4):041002. PubMed ID: 25411822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical literature review on primary blast thorax injury and their outcomes.
    Boutillier J; Deck C; Magnan P; Naz P; Willinger R
    J Trauma Acute Care Surg; 2016 Aug; 81(2):371-9. PubMed ID: 27050882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Lung injuries caused by explosion in rabbits. 2. Pathogenetic mechanisms in lung injury (a hypothesis)].
    Dancewicz R; Barcikowski S; Zielinski KW; Kulig A; Sygut J
    Z Exp Chir Transplant Kunstliche Organe; 1988; 21(2):91-9. PubMed ID: 3394359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A laboratory model for studying blast overpressure injury.
    Jaffin JH; McKinney L; Kinney RC; Cunningham JA; Moritz DM; Kraimer JM; Graeber GM; Moe JB; Salander JM; Harmon JW
    J Trauma; 1987 Apr; 27(4):349-56. PubMed ID: 3494851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary injury risk assessment for long-duration blasts: a meta-analysis.
    Rafaels KA; Bass CR; Panzer MB; Salzar RS
    J Trauma; 2010 Aug; 69(2):368-74. PubMed ID: 20699746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of inflammatory response and sequestration of blood iron transferrin complexes in a rat model of lung injury resulting from exposure to low-frequency shock waves.
    Gorbunov NV; McFaul SJ; Van Albert S; Morrissette C; Zaucha GM; Nath J
    Crit Care Med; 2004 Apr; 32(4):1028-34. PubMed ID: 15071397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical model for blast injury of human thorax based on digitized visible human.
    Li XF; Kuang JM; Nie SB; Xu J; Zhu J; Liu YH
    Technol Health Care; 2017 Dec; 25(6):1029-1039. PubMed ID: 28759981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary blast injury in mice: a novel model for studying blast injury in the laboratory using laser-induced stress waves.
    Satoh Y; Sato S; Saitoh D; Tokuno S; Hatano B; Shimokawaji T; Kobayashi H; Takishima K
    Lasers Surg Med; 2010 Apr; 42(4):313-8. PubMed ID: 20432280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure to sublethal blast overpressure reduces the food intake and exercise performance of rats.
    Bauman RA; Elsayed N; Petras JM; Widholm J
    Toxicology; 1997 Jul; 121(1):65-79. PubMed ID: 9217316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock waves increase pulmonary vascular leakage, inflammation, oxidative stress, and apoptosis in a mouse model.
    Tong C; Liu Y; Zhang Y; Cong P; Shi X; Liu Y; Shi Hongxu Jin L; Hou M
    Exp Biol Med (Maywood); 2018 Jul; 243(11):934-944. PubMed ID: 29984607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and mechanisms of cardiopulmonary injury caused by mine blasts in shoals: a randomized controlled study in a rabbit model.
    Han G; Wang Z; Wang J; Yang W; Chen J; Kang J; Zhang S; Wang A; Lai X
    PLoS One; 2013; 8(12):e81310. PubMed ID: 24358110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila melanogaster larvae as a model for blast lung injury.
    Bass CR; Meyerhoff KP; Damon AM; Bellizzi AM; Salzar RS; Rafaels KA
    J Trauma; 2010 Jul; 69(1):179-84. PubMed ID: 20173659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical mechanisms and scaling procedures applicable in assessing responses of the thorax energized by air-blast overpressures or by nonpenetrating missiles.
    Bowen IG; Fletcher ER; Richmond DR; Hirsch FG; White CS
    Ann N Y Acad Sci; 1968 Oct; 152(1):122-46. PubMed ID: 5257525
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.