These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8849910)

  • 1. A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp. latifolia by FST.
    Yang RC; Yeh FC; Yanchuk AD
    Genetics; 1996 Mar; 142(3):1045-52. PubMed ID: 8849910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilocus structure in Pinus contorta Dougl.
    Yang RC; Yeh FC
    Theor Appl Genet; 1993 Dec; 87(5):568-76. PubMed ID: 24190351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random amplified polymorphic DNA diversity of marginal and central populations in Pinus contorta subsp. latifolia.
    Fazekas AJ; Yeh FC
    Genome; 2001 Feb; 44(1):13-22. PubMed ID: 11269347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population structure of morphological traits in Clarkia dudleyana. I. Comparison of FST between allozymes and morphological traits.
    Podolsky RH; Holtsford TP
    Genetics; 1995 Jun; 140(2):733-44. PubMed ID: 7498750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits.
    González-Martínez SC; Alía R; Gil L
    Heredity (Edinb); 2002 Sep; 89(3):199-206. PubMed ID: 12209390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of microsatellites and isozymes in genetic diversity studies of Oryza glumaepatula (Poaceae) populations.
    Karasawa MM; Vencovsky R; Silva CM; Cardim DC; Bressan Ede A; Oliveira GC; Veasey EA
    Rev Biol Trop; 2012 Dec; 60(4):1463-78. PubMed ID: 23342502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of tree size on shoot structure and physiology of Pinus contorta and Pinus aristata.
    Schoettle AW
    Tree Physiol; 1994; 14(7_9):1055-1068. PubMed ID: 14967670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer.
    Godbout J; Jaramillo-Correa JP; Beaulieu J; Bousquet J
    Mol Ecol; 2005 Oct; 14(11):3497-512. PubMed ID: 16156818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine.
    Epperson BK; Allard RW
    Genetics; 1989 Feb; 121(2):369-77. PubMed ID: 2731726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia.
    Godbout J; Fazekas A; Newton CH; Yeh FC; Bousquet J
    Mol Ecol; 2008 May; 17(10):2463-75. PubMed ID: 18430147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a framework map in Pinus contorta subsp. latifolia using random amplified polymorphic DNA markers.
    Li C; Yeh FC
    Genome; 2001 Apr; 44(2):147-53. PubMed ID: 11341723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genetic structure, subdivision, and population differentiation in Stankewiczii pine Pinus stankewiczii (Sukacz.) Fomin from Mountain Crimea].
    Korshikov II; Gorlova EM
    Genetika; 2006 Jun; 42(6):824-32. PubMed ID: 16871788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic variation and differentiation of peat-bog and dry-meadow populations of the dwarf mountain pine Pinus mugo Turra in the highlands of the Ukrainian Carpathians].
    Korshikov II; Pirko IaV
    Genetika; 2002 Sep; 38(9):1235-41. PubMed ID: 12391884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing adaptive from nonadaptive genetic differentiation: comparison of Q(ST) and F(ST) at two spatial scales.
    Volis S; Yakubov B; Shulgina I; Ward D; Mendlinger S
    Heredity (Edinb); 2005 Dec; 95(6):466-75. PubMed ID: 16189543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reciprocal relationship between the genetic diversity at two metabolically-linked isozyme loci in several conifer species.
    Bergmann F; Mejnartowicz L
    Genetica; 2000; 110(1):63-71. PubMed ID: 11519876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of quantitative and molecular variation in agroforestry populations of the shea tree (Vitellaria paradoxa C.F. Gaertn) in Mali.
    Sanou H; Lovett PN; Bouvet JM
    Mol Ecol; 2005 Jul; 14(8):2601-10. PubMed ID: 15969738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage Disequilibrium between Allozymes in Natural Populations of Lodgepole Pine.
    Epperson BK; Allard RW
    Genetics; 1987 Feb; 115(2):341-52. PubMed ID: 17246370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EVOLUTION OF THE PYGMY-FOREST EDAPHIC SUBSPECIES OF PINUS CONTORT A ACROSS AN ECOLOGICAL STAIRCASE.
    Aitken SN; Libby WJ
    Evolution; 1994 Aug; 48(4):1009-1019. PubMed ID: 28564456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).
    Cullingham CI; Cooke JE; Coltman DW
    Genome; 2013 Oct; 56(10):577-85. PubMed ID: 24237338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isozyme polymorphisms provide evidence of clinal variation with elevation in Nothofagus pumilio.
    Premoli AC
    J Hered; 2003; 94(3):218-26. PubMed ID: 12816962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.