These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8849990)

  • 41. Analysis of point mutations by use of amber stop codon suppression.
    Lesley SA
    Methods Mol Biol; 1996; 57():65-73. PubMed ID: 8849995
    [No Abstract]   [Full Text] [Related]  

  • 42. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli.
    Viswanathan M; Lacirignola JJ; Hurley RL; Lovett ST
    J Mol Biol; 2000 Sep; 302(3):553-64. PubMed ID: 10986118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli.
    Wong QN; Ng VC; Lin MC; Kung HF; Chan D; Huang JD
    Nucleic Acids Res; 2005 Mar; 33(6):e59. PubMed ID: 15800210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Primer design and primer-directed sequencing.
    Gerischer U; Dürre P
    Methods Mol Biol; 2001; 167():39-51. PubMed ID: 11265320
    [No Abstract]   [Full Text] [Related]  

  • 45. Multiplex site-directed mutagenesis strategy including high-efficiency selection of the mutant PCR products.
    Varga-Orvos Z; Nagy ZB; Mészáros A; Kökény S; Gergely P; Tamás L; Poór G
    Biotechnol Lett; 2007 Dec; 29(12):1921-5. PubMed ID: 17687622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased efficiency of oligonucleotide mutagenesis by removal of endogenous primers from preparations of single-stranded M13 DNA.
    Xu SY; Cue D
    Biotechniques; 1990 Feb; 8(2):168-9. PubMed ID: 2317369
    [No Abstract]   [Full Text] [Related]  

  • 47. Fidelity of mutant HIV-1 reverse transcriptases: interaction with the single-stranded template influences the accuracy of DNA synthesis.
    Kim B; Hathaway TR; Loeb LA
    Biochemistry; 1998 Apr; 37(17):5831-9. PubMed ID: 9558316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Site-directed mutagenesis.
    Nøhr J; Kristiansen K
    Methods Mol Biol; 2003; 232():127-31. PubMed ID: 12840545
    [No Abstract]   [Full Text] [Related]  

  • 49. Site-directed mutagenesis by combination of homologous recombination and DpnI digestion of the plasmid template in Escherichia coli.
    Li J; Li C; Xiao W; Yuan D; Wan G; Ma L
    Anal Biochem; 2008 Feb; 373(2):389-91. PubMed ID: 18037368
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutational analysis of active-site residues of the enterococcal D-ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-ala-D-Ala ligase and D-ala-D-Ala carboxypeptidase VanY.
    Lessard IA; Walsh CT
    Chem Biol; 1999 Mar; 6(3):177-87. PubMed ID: 10074467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of amino acid substitutions that severely alter the DNA repair functions of Escherichia coli endonuclease IV.
    Yang X; Tellier P; Masson JY; Vu T; Ramotar D
    Biochemistry; 1999 Mar; 38(12):3615-23. PubMed ID: 10090748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vectors for expressing proteins at the amino-terminus of an activation domain for use in the yeast two-hybrid system.
    Brown MA; MacGillivray RT
    Anal Biochem; 1997 May; 247(2):451-2. PubMed ID: 9177714
    [No Abstract]   [Full Text] [Related]  

  • 54. Site-directed mutagenesis of whole viral genomes.
    Liu L; Lomonossoff GP
    Methods Mol Biol; 2008; 451():395-404. PubMed ID: 18370270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-directed mutagenesis by inverse PCR.
    Dominy CN; Andrews DW
    Methods Mol Biol; 2003; 235():209-23. PubMed ID: 12904664
    [No Abstract]   [Full Text] [Related]  

  • 56. Small vectors for expression based on dominant drug resistance with direct multicopy selection.
    Higgins DR; Busser K; Comiskey J; Whittier PS; Purcell TJ; Hoeffler JP
    Methods Mol Biol; 1998; 103():41-53. PubMed ID: 9680632
    [No Abstract]   [Full Text] [Related]  

  • 57. A site-directed mutagenesis method utilising large double-stranded DNA templates for the simultaneous introduction of multiple changes and sequential multiple rounds of mutation: Application to the study of whole viral genomes.
    Liu L; Lomonossoff G
    J Virol Methods; 2006 Oct; 137(1):63-71. PubMed ID: 16857273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection of novel eukaryotic DNA polymerases by mutagenesis and genetic complementation of yeast.
    Venkatesan RN; Loeb LA
    Methods Mol Biol; 2003; 230():19-26. PubMed ID: 12824566
    [No Abstract]   [Full Text] [Related]  

  • 59. Gene assembly-aided mutagenesis (GAAM).
    Yao FL; Klein MH; Loosmore S; Rovinski B
    Biotechniques; 1995 Mar; 18(3):372-4, 376. PubMed ID: 7779380
    [No Abstract]   [Full Text] [Related]  

  • 60. Site-directed mutations in motif VI of Escherichia coli DNA helicase II result in multiple biochemical defects: evidence for the involvement of motif VI in the coupling of ATPase and DNA binding activities via conformational changes.
    Hall MC; Ozsoy AZ; Matson SW
    J Mol Biol; 1998 Mar; 277(2):257-71. PubMed ID: 9514760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.