BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8851808)

  • 1. Characterization of a single-locus minisatellite DNA in Xenopus laevis.
    Shain DH; Stone RT; Yoo J; Zuber MX
    Genome; 1996 Feb; 39(1):230-3. PubMed ID: 8851808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular promiscuity in Schistosoma mansoni: nuclear transcribed DNA sequences are part of a mitochondrial minisatellite region.
    Pena HB; de Souza CP; Simpson AJ; Pena SD
    Proc Natl Acad Sci U S A; 1995 Jan; 92(3):915-9. PubMed ID: 7846078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandemly repeated DNA sequences from Xenopus laevis. I. Studies on sequence organization and variation in satellite 1 DNA (741 base-pair repeat).
    Lam BS; Carroll D
    J Mol Biol; 1983 Apr; 165(4):567-85. PubMed ID: 6189999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Satellite DNA from Xenopus laevis: comparative analysis of 745 and 1037 base pair Hind III tandem repeats.
    Meyerhof W; Tappeser B; Korge E; Knöchel W
    Nucleic Acids Res; 1983 Oct; 11(20):6997-7009. PubMed ID: 6314270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and genomic organization of cichlid fish minisatellites.
    Harris AS; Wright JM
    Genome; 1995 Feb; 38(1):177-84. PubMed ID: 7729681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription termination and processing of transcripts from tRNA-related Xenopus satellite DNA sequences.
    Meyerhof W; Wittig B; Tappeser B; Knöchel W
    Eur J Biochem; 1987 Apr; 164(2):287-93. PubMed ID: 3569263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning a selected fragment from a human DNA 'fingerprint': isolation of an extremely polymorphic minisatellite.
    Wong Z; Wilson V; Jeffreys AJ; Thein SL
    Nucleic Acids Res; 1986 Jun; 14(11):4605-16. PubMed ID: 2423969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolated clusters of paired tandemly repeated sequences in the Xenopus laevis genome.
    Carroll D; Garrett JE; Lam BS
    Mol Cell Biol; 1984 Feb; 4(2):254-9. PubMed ID: 6700590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive amplification and transposition of a novel repetitive element, xstir, together with its terminal inverted repeat in the evolution of Xenopus.
    Hikosaka A; Yokouchi E; Kawahara A
    J Mol Evol; 2000 Dec; 51(6):554-64. PubMed ID: 11116329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats.
    Hikosaka A; Kawahara A
    J Mol Evol; 2004 Dec; 59(6):738-46. PubMed ID: 15599506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide sequence and evolutionary conservation of a minisatellite variable number tandem repeat cloned from Atlantic salmon, Salmo salar.
    Bentzen P; Wright JM
    Genome; 1993 Apr; 36(2):271-7. PubMed ID: 8514155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence, genomic organization and evolution of a major repetitive DNA family in tilapia (Oreochromis mossambicus/hornorum).
    Wright JM
    Nucleic Acids Res; 1989 Jul; 17(13):5071-9. PubMed ID: 2762120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minisatellite and microsatellite length variation at a complex bovine VNTR locus.
    Nave A; Kashi Y; Soller M
    Anim Genet; 1997 Feb; 28(1):52-4. PubMed ID: 9124709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence of the gene coding for ribosomal protein S8 of Xenopus laevis.
    Mariottini P; Bagni C; Francesconi A; Cecconi F; Serra MJ; Chen QM; Loreni F; Annesi F; Amaldi F
    Gene; 1993 Oct; 132(2):255-60. PubMed ID: 8224872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of repetitive DNA sequences on in vitro Xenopus laevis chromosomes by primed in situ labeling (PRINS).
    Freeman JL; Rayburn AL
    J Hered; 2005; 96(5):603-6. PubMed ID: 16135708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A satellite DNA family from pollock (Pollachius virens).
    Denovan EM; Wright JM
    Gene; 1990 Mar; 87(2):279-83. PubMed ID: 2332172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCR amplification of a polymorphic minisatellite VNTR locus in whiting (Merlangius merlangus L.).
    McGregor D; Galvin P; Sadusky T; Cross T
    Anim Genet; 1996 Feb; 27(1):49-51. PubMed ID: 8624036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA.
    Scalvenzi T; Pollet N
    Mol Phylogenet Evol; 2014 Dec; 81():1-9. PubMed ID: 25193611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of two families of satellite-like repetitive DNA sequences from the zebrafish (Brachydanio rerio).
    Ekker M; Fritz A; Westerfield M
    Genomics; 1992 Aug; 13(4):1169-73. PubMed ID: 1339388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a highly conserved satellite DNA from the mollusc Mytilus edulis.
    Ruiz-Lara S; Prats E; Sainz J; Cornudella L
    Gene; 1992 Aug; 117(2):237-42. PubMed ID: 1639270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.