These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8852354)

  • 1. Cholesterol oxidase from Rhodococcus equi is likely the major factor involved in the cooperative lytic process (CAMP reaction) with Listeria monocytogenes.
    Fernánández-Garayzábal JF; Delgado C; Blanco MM; Suárez G; Domínguez L
    Lett Appl Microbiol; 1996 Mar; 22(3):249-52. PubMed ID: 8852354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel mechanism for the CAMP reaction between Listeria monocytogenes and Corynebacterium equi.
    McKellar RC
    Int J Food Microbiol; 1993 Mar; 18(1):77-82. PubMed ID: 8466816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sulphydryl-activated cytolysin and a sphingomyelinase C are the major membrane-damaging factors involved in cooperative (CAMP-like) haemolysis of Listeria spp.
    Ripio MT; Geoffroy C; Domínguez G; Alouf JE; Vázquez-Boland JA
    Res Microbiol; 1995 May; 146(4):303-13. PubMed ID: 7569324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taxonomic note: a proposal for reviewing the interpretation of the CAMP reaction between Listeria monocytogenes and Rhodococcus equi.
    Fernández-Garayzábal JF; Suárez G; Blanco MM; Gibello A; Domínguez L
    Int J Syst Bacteriol; 1996 Jul; 46(3):832-4. PubMed ID: 8782698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi.
    Navas J; González-Zorn B; Ladrón N; Garrido P; Vázquez-Boland JA
    J Bacteriol; 2001 Aug; 183(16):4796-805. PubMed ID: 11466283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of macrophage membrane cholesterol by intracellular Rhodococcus equi.
    Linder R; Bernheimer AW
    Vet Microbiol; 1997 Jun; 56(3-4):269-76. PubMed ID: 9226841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haemolytic and phospholipase C (PLC) activities of Rhodococcus equi.
    Smola J; Katerov V; Schalén C
    J Appl Bacteriol; 1994 Sep; 77(3):325-33. PubMed ID: 7989259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipase C in Listeria.
    Mencíková E
    Acta Microbiol Hung; 1989; 36(2-3):321-5. PubMed ID: 2561039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of cholesterol oxidase and choline phosphohydrolase from Rhodococcus equi.
    Machang'u RS; Prescott JF
    Can J Vet Res; 1991 Oct; 55(4):332-40. PubMed ID: 1790488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximization of cholesterol oxidase production by Rhodococcus equi no. 23 By using response surface methodology.
    Lee MT; Chen WC; Chou CC
    Biotechnol Appl Biochem; 1998 Dec; 28 ( Pt 3)():229-33. PubMed ID: 9799721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Special position of strongly haemolytic strains of the genus Listeria].
    Seeliger HP; Schrettenbrunner A; Pongratz G; Hof H
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1982 Jun; 252(2):176-90. PubMed ID: 6812318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional factors that affect the production of cholesterol oxidase by Rhodococcus equi no. 23.
    Lee MT; Chen WC; Chou CC
    Biotechnol Appl Biochem; 1997 Dec; 26(3):159-62. PubMed ID: 9428154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revision of the validity of CAMP tests for Listeria identification. Proposal of an alternative method for the determination of haemolytic activity by Listeria strains.
    Vazquez-Boland JA; Dominguez L; Fernandez JF; Rodriguez-Ferri EF; Briones V; Blanco M; Suarez G
    Acta Microbiol Hung; 1990; 37(2):201-6. PubMed ID: 2270739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi.
    Pei Y; Dupont C; Sydor T; Haas A; Prescott JF
    Vet Microbiol; 2006 Dec; 118(3-4):240-6. PubMed ID: 16979852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplate technique to determine hemolytic activity for routine typing of Listeria strains.
    Dominguez Rodriguez L; Vazquez Boland JA; Fernandez Garayzabal JF; Echalecu Tranchant P; Gomez-Lucia E; Rodriguez Ferri EF; Suarez Fernandez G
    J Clin Microbiol; 1986 Jul; 24(1):99-103. PubMed ID: 3088037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Routine test for in vitro differentiation of pathogenic and apathogenic Listeria monocytogenes strains.
    Skalka B; Smola J; Elischerová K
    J Clin Microbiol; 1982 Mar; 15(3):503-7. PubMed ID: 6804488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of cholesterol oxidase by Rhodococcus equi No. 23 in a jar fermenter.
    Chou CC; Lee MT; Chen WC
    Biotechnol Appl Biochem; 1999 Jun; 29(3):217-21. PubMed ID: 10334951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the Listeria monocytogenes virulence factors involved in the CAMP reaction.
    McKellar RC
    Lett Appl Microbiol; 1994 Feb; 18(2):79-81. PubMed ID: 34892912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A diagnostic medium for Arcanobacterium haemolyticum and other bacterial species reacting with hemolytic synergism to the equi-factor of Rhodococcus equi].
    Votava M; Skalka B; Ondrovcík P; Růzicka F; Svoboda J; Woznicová V
    Epidemiol Mikrobiol Imunol; 2000 Aug; 49(3):123-9. PubMed ID: 11040494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23.
    Chang YC; Chou CC
    Biotechnol Appl Biochem; 2002 Apr; 35(2):69-74. PubMed ID: 11916448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.