BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 885240)

  • 21. Stable enhancement of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction following the exposure of isolated rat liver cells to glucagon.
    Taylor WM; Bygrave FL; Blackmore PF; Exton JH
    FEBS Lett; 1979 Aug; 104(1):31-4. PubMed ID: 225203
    [No Abstract]   [Full Text] [Related]  

  • 22. Ruthenium red-insensitive calcium transport in ascites-sarcoma 180/TG cells.
    Bygrave FL; Anderson TA
    Biochem J; 1981 Nov; 200(2):343-8. PubMed ID: 6176224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased permeability of mitochondria during Ca2+ release induced by t-butyl hydroperoxide or oxalacetate. the effect of ruthenium red.
    Beatrice MC; Stiers DL; Pfeiffer DR
    J Biol Chem; 1982 Jun; 257(12):7161-71. PubMed ID: 6177691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of 3',5'-cyclic AMP in glucagon-induced stimulation of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction of rat liver.
    Taylor WM; Reinhart P; Hunt NH; Bygrave FL
    FEBS Lett; 1980 Mar; 112(1):92-6. PubMed ID: 6154598
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria.
    Broekemeier KM; Schmid PC; Schmid HH; Pfeiffer DR
    J Biol Chem; 1985 Jan; 260(1):105-13. PubMed ID: 2578123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The action of Nupercaine on calcium efflux from rat liver mitochondria.
    Dawson AP; Fulton DV
    Biochem J; 1980 Jun; 188(3):749-55. PubMed ID: 6162452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperthermia inhibition of tumor cells growth in the presence of ruthenium red.
    Anghileri LJ; Marchal C; Matrat M; Crone-Escanye MC; Robert J
    Neoplasma; 1986; 33(5):603-8. PubMed ID: 2431329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonism by taurine on the ruthenium red-induced and 6-hydroxydopamine plus 1-methyl-4-phenylpyridinium-induced Ca2+ release from rat liver mitochondria.
    Palmi M; Youmbi G; Fusi F; Frosini M; Sgaragli GP; Della Corte L; Bianchi L; Tipton KF
    Adv Exp Med Biol; 1998; 442():91-8. PubMed ID: 9635019
    [No Abstract]   [Full Text] [Related]  

  • 29. Role of a rapidly dischargeable pool of calcium in the transition of isolated mitochondria.
    Krell H; Blaich G; Fromm H; Pfaff E
    Prog Clin Biol Res; 1988; 252():171-6. PubMed ID: 2450363
    [No Abstract]   [Full Text] [Related]  

  • 30. Calcium efflux parallel to total phosphate retention in rat liver mitochondria.
    Rigoni F; Panato L; Deana R
    Int J Biochem; 1984; 16(11):1121-5. PubMed ID: 6084602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of ruthenium red on the induction by Ca2+ ions of the beta- and gamma states of comuton regulation of mitochondrial respiration and oxidative phosphorylation].
    Elbakidze GM; Elbakidze IM; Gachechiladze AG
    Biull Eksp Biol Med; 1986 Jul; 102(7):36-8. PubMed ID: 2425865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of methotrexate on calcium flux in rat liver mitochondria, microsomes and plasma membrane vesicles.
    Pagadigorria CL; Marcon F; Kelmer-Bracht AM; Bracht A; Ishii-Iwamoto EL
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jul; 143(3):340-8. PubMed ID: 16730477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.
    Rugolo M; Siliprandi D; Siliprandi N; Toninello A
    Biochem J; 1981 Dec; 200(3):481-6. PubMed ID: 6177312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Naproxen affects Ca(2+) fluxes in mitochondria, microsomes and plasma membrane vesicles.
    Salgueiro-Pagadigorria CL; Kelmer-Bracht AM; Bracht A; Ishii-Iwamoto EL
    Chem Biol Interact; 2004 Jan; 147(1):49-63. PubMed ID: 14726152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The exchange of phospholipids between subcellular organelles of the liver.
    Kamath SA; Rubin E
    Arch Biochem Biophys; 1973 Sep; 158(1):312-22. PubMed ID: 4729301
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of ruthenium red during Ca2+ depletion and repletion in the isolated perfused rat liver.
    Okuda M; Lee HC; Wu QY; Chance B; Kumar C
    Res Commun Chem Pathol Pharmacol; 1992 Oct; 78(1):17-25. PubMed ID: 1281333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of Ca2+ efflux from mitochondria by nupercaine and tetracaine.
    Dawson AP; Selwyn MJ; Fulton DV
    Nature; 1979 Feb; 277(5696):484-6. PubMed ID: 763333
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S; Hughes BP; Barritt GJ
    Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efflux of Ca2+ and Mn2+ from rat liver mitochondria.
    Gunter TE; Gunter KK; Puskin JS; Russell PR
    Biochemistry; 1978 Jan; 17(2):339-45. PubMed ID: 413566
    [No Abstract]   [Full Text] [Related]  

  • 40. Effect of extracellular Ca++ omission on isolated hepatocytes. II. Loss of mitochondrial membrane potential and protection by inhibitors of uniport Ca++ transduction.
    Thomas CE; Reed DJ
    J Pharmacol Exp Ther; 1988 May; 245(2):501-7. PubMed ID: 2452872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.