BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8852426)

  • 1. The reductive conversion of the carcinogen chromium (VI) and its role in the formation of DNA lesions.
    Kortenkamp A; Casadevall M; Da Cruz Fresco P
    Ann Clin Lab Sci; 1996; 26(2):160-75. PubMed ID: 8852426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for molecular oxygen in the formation of DNA damage during the reduction of the carcinogen chromium (VI) by glutathione.
    Kortenkamp A; Casadevall M; Faux SP; Jenner A; Shayer RO; Woodbridge N; O'Brien P
    Arch Biochem Biophys; 1996 May; 329(2):199-207. PubMed ID: 8638952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium(VI)-mediated DNA damage: oxidative pathways resulting in the formation of DNA breaks and abasic sites.
    Casadevall M; da Cruz Fresco P; Kortenkamp A
    Chem Biol Interact; 1999 Nov; 123(2):117-32. PubMed ID: 10597905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reductive conversion of chromium (VI) by ascorbate gives rise to apurinic/apyrimidinic sites in isolated DNA.
    da Cruz Fresco P; Shacker F; Kortenkamp A
    Chem Res Toxicol; 1995 Sep; 8(6):884-90. PubMed ID: 7492738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.
    Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P
    J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediates produced in the reaction of chromium(VI) with dehydroascorbate cause single-strand breaks in plasmid DNA.
    Stearns DM; Wetterhahn KE
    Chem Res Toxicol; 1997 Mar; 10(3):271-8. PubMed ID: 9084906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(IV) causes activation of nuclear transcription factor-kappa B, DNA strand breaks and dG hydroxylation via free radical reactions.
    Shi X; Ding M; Ye J; Wang S; Leonard SS; Zang L; Castranova V; Vallyathan V; Chiu A; Dalal N; Liu K
    J Inorg Biochem; 1999 May; 75(1):37-44. PubMed ID: 10402675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of o-phenanthroline on DNA single-strand breaks, alkali-labile sites, glutathione reductase, and formation of chromium(V) in Chinese hamster V-79 cells treated with sodium chromate (VI).
    Sugiyama M; Tsuzuki K; Haramaki N
    Arch Biochem Biophys; 1993 Sep; 305(2):261-6. PubMed ID: 8396886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of mutagenic DNA damage by chromium (VI) and glutathione.
    Liu S; Dixon K
    Environ Mol Mutagen; 1996; 28(2):71-9. PubMed ID: 8844987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potent protective effect of melatonin on chromium(VI)-induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes.
    Susa N; Ueno S; Furukawa Y; Ueda J; Sugiyama M
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):377-84. PubMed ID: 9194422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of DNA cleaving species during the reduction of chromate by ascorbate.
    da Cruz Fresco P; Kortenkamp A
    Carcinogenesis; 1994 Sep; 15(9):1773-8. PubMed ID: 7923568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Cr(IV)-GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity.
    Liu KJ; Shi X; Dalal NS
    Biochem Biophys Res Commun; 1997 Jun; 235(1):54-8. PubMed ID: 9196034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentially deadly carcinogenic chromium redox cycle involving peroxochromium(IV) and glutathione.
    Marin R; Ahuja Y; Bose RN
    J Am Chem Soc; 2010 Aug; 132(31):10617-9. PubMed ID: 20681676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of DNA damage and insight into mutations by chromium(VI) in the presence of glutathione.
    Mazzer PA; Maurmann L; Bose RN
    J Inorg Biochem; 2007 Jan; 101(1):44-55. PubMed ID: 17011629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium (IV)-mediated fenton-like reaction causes DNA damage: implication to genotoxicity of chromate.
    Luo H; Lu Y; Shi X; Mao Y; Dalal NS
    Ann Clin Lab Sci; 1996; 26(2):185-91. PubMed ID: 8852428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.
    Quievryn G; Peterson E; Messer J; Zhitkovich A
    Biochemistry; 2003 Feb; 42(4):1062-70. PubMed ID: 12549927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-electron reduction of chromium(VI) by alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear transcription factor-kappaB activation.
    Chen F; Ye J; Zhang X; Rojanasakul Y; Shi X
    Arch Biochem Biophys; 1997 Feb; 338(2):165-72. PubMed ID: 9028868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Molecular effects of chromium compound activity].
    Woźniak K
    Postepy Hig Med Dosw; 1996; 50(4):383-94. PubMed ID: 9019747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mannitol or catalase on the generation of reactive oxygen species leading to DNA damage by Chromium(VI) reduction with ascorbate.
    Tsou TC; Lai HJ; Yang JL
    Chem Res Toxicol; 1999 Oct; 12(10):1002-9. PubMed ID: 10525278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.