These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 8852632)

  • 1. Detached, purified nerve terminals from skate electric organ for biochemical and physiological studies.
    Kriebel ME; Dowdall MJ; Pappas GD; Downie DL
    Biol Bull; 1996 Feb; 190(1):88-97. PubMed ID: 8852632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological, physiological and biochemical observations on skate electric organ.
    Fox GQ; Kriebel ME; Pappas GD
    Anat Embryol (Berl); 1990; 181(4):305-15. PubMed ID: 2161187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmitter quantal size in Torpedo electrocytes is determined by frequency of release.
    Kriebel ME; Fox GQ; Keller B
    Brain Res; 1999 Oct; 845(2):185-91. PubMed ID: 10536197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.
    Girod R; Corrèges P; Jacquet J; Dunant Y
    J Physiol; 1993 Nov; 471():129-57. PubMed ID: 8120801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two classes of spontaneous miniature excitatory junction potentials and one synaptic vesicle class are present in the ray electrocyte.
    Kriebel ME; Gross C; Pappas GD
    J Comp Physiol A; 1987 Mar; 160(3):331-40. PubMed ID: 3572851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SEM-EDS probing of morphological and physiological changes produced by a porphyrin photosensitizer in Psammobatis extenta electrocytes.
    Prado Figueroa M; Santiago Contreras J
    Micron; 2007; 38(6):668-73. PubMed ID: 17145183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quantal nature of transmission and spontaneous potentials at the Torpedo electromotor junction.
    Erdélyi L
    Acta Physiol Hung; 1985; 65(1):81-93. PubMed ID: 2986414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: its role as regulator of acetylcholine release.
    Ribera J; Marsal J; Casanovas A; Hukkanen M; Tarabal O; Esquerda JE
    J Neurosci Res; 1998 Jan; 51(1):90-102. PubMed ID: 9452313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the development of the adult electric organ in the mormyrid fish Pollimyrus isidori (with special focus on the innervation).
    Denizot JP; Kirschbaum F; Max Westby GW; Tsuji S
    J Neurocytol; 1982 Dec; 11(6):913-34. PubMed ID: 7153789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of Psammobatis extenta (Rajidae) electrolytes and cytochemical localization of acetylcholinesterase, acetylcholine receptor and F-actin.
    Prado Figueroa M; Vidal AC; Barrantes FJ
    Biocell; 1995 Aug; 19(2):113-23. PubMed ID: 7550572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoreactivity of skate electrocytes towards monoclonal antibodies against human dystrophin and dystrophin-related (DMDL) protein.
    Dowdall MJ; Ellis JM; Nguyen thi Man ; Morris GE
    Neurosci Lett; 1992 Apr; 138(1):27-31. PubMed ID: 1407662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KCl stimulation and ultrastructural responses of tannic acid-stained cholinergic synaptic terminals.
    Fox GQ; Kriebel ME
    Cell Biol Int; 2000; 24(11):773-86. PubMed ID: 11067762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge.
    Castelló ME; Rodríguez-Cattáneo A; Aguilera PA; Iribarne L; Pereira AC; Caputi AA
    J Exp Biol; 2009 May; 212(Pt 9):1351-64. PubMed ID: 19376956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric organ discharge and electrosensory reafference in skates.
    New JG
    Biol Bull; 1994 Aug; 187(1):64-75. PubMed ID: 7918797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nerve terminal components from normal and denervated Narcine electric organ.
    Hooper JE; Deutsch JW; Miljanich GP; Brasier AR; Kelly RB
    J Physiol (Paris); 1982; 78(4):443-53. PubMed ID: 7182490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD.
    Mills A; Zakon HH; Marchaterre MA; Bass AH
    J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the cholinergic nature of C-terminals associated with subsurface cisterns in alpha-motoneurons of rat.
    Nagy JI; Yamamoto T; Jordan LM
    Synapse; 1993 Sep; 15(1):17-32. PubMed ID: 8310422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-binding sites as determined by electron microscope X-ray microanalysis in the electrocytes of the electric organ of Torpedo marmorata.
    Goffinet G
    Histochemistry; 1978 Dec; 58(4):307-17. PubMed ID: 738907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.