These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8853079)

  • 1. Consequences of electroencephalographic-suppressive doses of propofol in conjunction with deep hypothermic circulatory arrest.
    Stone JG; Young WL; Marans ZS; Solomon RA; Smith CR; Jamdar SC; Ostapkovich N; Diaz J
    Anesthesiology; 1996 Sep; 85(3):497-501. PubMed ID: 8853079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac performance preserved despite thiopental loading.
    Stone JG; Young WL; Marans ZS; Khambatta HJ; Solomon RA; Smith CR; Ostapkovich N; Jamdar SC; Diaz J
    Anesthesiology; 1993 Jul; 79(1):36-41. PubMed ID: 8342826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures.
    Mezrow CK; Midulla PS; Sadeghi AM; Gandsas A; Wang W; Dapunt OE; Zappulla R; Griepp RB
    J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1006-19. PubMed ID: 8159021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propofol does not ameliorate cerebral venous oxyhemoglobin desaturation during hypothermic cardiopulmonary bypass.
    Souter MJ; Andrews PJ; Alston RP
    Anesth Analg; 1998 May; 86(5):926-31. PubMed ID: 9585270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep hypothermic circulatory arrest during the arterial switch operation is associated with reduction in cerebral oxygen extraction but no increase in white matter injury.
    Drury PP; Gunn AJ; Bennet L; Ganeshalingham A; Finucane K; Buckley D; Beca J
    J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1327-33. PubMed ID: 23499473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroencephalographic burst suppression by propofol infusion in humans: hemodynamic consequences.
    Illievich UM; Petricek W; Schramm W; Weindlmayr-Goettel M; Czech T; Spiss CK
    Anesth Analg; 1993 Jul; 77(1):155-60. PubMed ID: 8317724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest.
    Langley SM; Chai PJ; Tsui SS; Jaggers JJ; Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Jun; 119(6):1262-9. PubMed ID: 10838546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thromboxane A2-receptor blockade improves cerebral protection for deep hypothermic circulatory arrest.
    Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Kern FH; Gaynor JW; Greeley WJ; Ungerleider RM
    Eur J Cardiothorac Surg; 1997 Aug; 12(2):228-35. PubMed ID: 9288512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children.
    Greeley WJ; Ungerleider RM; Smith LR; Reves JG
    J Thorac Cardiovasc Surg; 1989 May; 97(5):737-45. PubMed ID: 2709864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiopental-induced burst suppression measured by the bispectral index is extended during propofol administration compared with sevoflurane.
    Yoon JR; Kim YS; Kim TK
    J Neurosurg Anesthesiol; 2012 Apr; 24(2):146-51. PubMed ID: 22210231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets.
    Schultz S; Antoni D; Shears G; Markowitz S; Pastuszko P; Greeley W; Wilson DF; Pastuszko A
    J Thorac Cardiovasc Surg; 2006 Oct; 132(4):839-44. PubMed ID: 17000295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS Subgroup of McSPI.
    Newman MF; Murkin JM; Roach G; Croughwell ND; White WD; Clements FM; Reves JG
    Anesth Analg; 1995 Sep; 81(3):452-7. PubMed ID: 7653803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery.
    Newburger JW; Jonas RA; Wernovsky G; Wypij D; Hickey PR; Kuban KC; Farrell DM; Holmes GL; Helmers SL; Constantinou J; Carrazana E; Barlow JK; Walsh AZ; Lucius KC; Share JC; Wessel DL; Hanley FL; Mayer JE; Costaneda AR; Ware JH
    N Engl J Med; 1993 Oct; 329(15):1057-64. PubMed ID: 8371727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-dose propofol during cardiopulmonary bypass decreases biochemical markers of myocardial injury in coronary surgery patients: a comparison with isoflurane.
    Xia Z; Huang Z; Ansley DM
    Anesth Analg; 2006 Sep; 103(3):527-32. PubMed ID: 16931656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest.
    Skaryak LA; Kirshbom PM; DiBernardo LR; Kern FH; Greeley WJ; Ungerleider RM; Gaynor JW
    J Thorac Cardiovasc Surg; 1995 Apr; 109(4):744-51; discussion 751-2. PubMed ID: 7715223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of movement during propofol/nitrous oxide anesthesia. Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators.
    Leslie K; Sessler DI; Smith WD; Larson MD; Ozaki M; Blanchard D; Crankshaw DP
    Anesthesiology; 1996 Jan; 84(1):52-63. PubMed ID: 8572354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiopulmonary bypass-induced changes in plasma concentrations of propofol and in auditory evoked potentials.
    Hammarén E; Yli-Hankala A; Rosenberg PH; Hynynen M
    Br J Anaesth; 1996 Sep; 77(3):360-4. PubMed ID: 8949811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.