These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 8854252)
1. Ultrastructural, enzyme-, lectin, and immunohistochemical studies of the erosion zone in rat tibiae. Nakamura H; Ozawa H J Bone Miner Res; 1996 Aug; 11(8):1158-64. PubMed ID: 8854252 [TBL] [Abstract][Full Text] [Related]
2. Chondroclasts and osteoclasts in bones of young rats: comparison of ultrastructural and functional features. Nordahl J; Andersson G; Reinholt FP Calcif Tissue Int; 1998 Nov; 63(5):401-8. PubMed ID: 9799825 [TBL] [Abstract][Full Text] [Related]
3. Localization of tartrate-resistant acid phosphatase (TRAP), membrane type-1 matrix metalloproteinases (MT1-MMP) and macrophages during early endochondral bone formation. Blumer MJ; Longato S; Fritsch H J Anat; 2008 Oct; 213(4):431-41. PubMed ID: 18643874 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural localization of tartrate-resistant acid phosphatase (purple acid phosphatase) activity in chicken cartilage and bone. Fukushima O; Bekker PJ; Gay CV Am J Anat; 1991 Jul; 191(3):228-36. PubMed ID: 1656724 [TBL] [Abstract][Full Text] [Related]
5. A histomorphometric, structural, and immunocytochemical study of the effects of diet-induced hypocalcemia on bone in growing rats. Mocetti P; Ballanti P; Zalzal S; Silvestrini G; Bonucci E; Nanci A J Histochem Cytochem; 2000 Aug; 48(8):1059-78. PubMed ID: 10898800 [TBL] [Abstract][Full Text] [Related]
6. Establishment and characterization of tartrate-resistant acid phosphatase and alkaline phosphatase double positive cell lines. Masuda R; Sakiyama H; Nonaka T; Kwan A; Nakagawa K; Moriya H; Imajoh-Ohmi S; Honjo M; Yoshida K Cell Tissue Res; 2001 Jun; 304(3):351-9. PubMed ID: 11456411 [TBL] [Abstract][Full Text] [Related]
7. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Nakamura H; Sato G; Hirata A; Yamamoto T Bone; 2004 Jan; 34(1):48-56. PubMed ID: 14751562 [TBL] [Abstract][Full Text] [Related]
8. Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry. Clark SA; Ambrose WW; Anderson TR; Terrell RS; Toverud SU J Bone Miner Res; 1989 Jun; 4(3):399-405. PubMed ID: 2763875 [TBL] [Abstract][Full Text] [Related]
9. Cytochemical localization of tartrate-resistant acid phosphatase, alkaline phosphatase, and nonspecific esterase in perivascular cells of cartilage canals in the developing mouse epiphysis. Cole AA; Wezeman FH Am J Anat; 1987 Nov; 180(3):237-42. PubMed ID: 3434540 [TBL] [Abstract][Full Text] [Related]
10. Matrix metalloproteinase-9 expression, tartrate-resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones. Takahara M; Naruse T; Takagi M; Orui H; Ogino T J Orthop Res; 2004 Sep; 22(5):1050-7. PubMed ID: 15304278 [TBL] [Abstract][Full Text] [Related]
11. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. Miao D; Scutt A J Histochem Cytochem; 2002 Mar; 50(3):333-40. PubMed ID: 11850436 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructural localization of tartrate-resistant acid phosphatase activity in rat osteoblasts. Yamamoto T; Nagai H J Electron Microsc (Tokyo); 1998; 47(6):659-63. PubMed ID: 9972546 [TBL] [Abstract][Full Text] [Related]
13. Ultrastructural and histochemical studies of the epiphyseal plate in normal chicks. Takechi M; Itakura C Anat Rec; 1995 May; 242(1):29-39. PubMed ID: 7604979 [TBL] [Abstract][Full Text] [Related]
14. A histological investigation on tissue responses to titanium implants in cortical bone of the rat femur. Ohtsu A; Kusakari H; Maeda T; Takano Y J Periodontol; 1997 Mar; 68(3):270-83. PubMed ID: 9100203 [TBL] [Abstract][Full Text] [Related]
15. Immunohistochemical localization of heparan sulfate proteoglycan in rat tibiae. Nakamura H; Ozawa H J Bone Miner Res; 1994 Aug; 9(8):1289-99. PubMed ID: 7976511 [TBL] [Abstract][Full Text] [Related]
16. The cellular organization of fibroblastic cells and macrophages at regions of uncalcified cartilage resorption in the embryonic chick femur as revealed by alkaline and acid phosphatase histochemistry. Sorrell JM; Weiss L Anat Rec; 1982 Apr; 202(4):491-9. PubMed ID: 7072991 [TBL] [Abstract][Full Text] [Related]
17. Single cell enzyme activity and proliferation in the growth plate: effects of growth hormone. Gevers EF; Milne J; Robinson IC; Loveridge N J Bone Miner Res; 1996 Aug; 11(8):1103-11. PubMed ID: 8854246 [TBL] [Abstract][Full Text] [Related]
18. The fine structure of the proximal growth plate and metaphysis of the avian tibia: endochondral osteogenesis. Howlett CR J Anat; 1980 Jun; 130(Pt 4):745-68. PubMed ID: 6159341 [TBL] [Abstract][Full Text] [Related]
19. Stereological characteristics of the mesenchymal complex in the degenerative-osteogenic zone of the growth cartilage of the tibia of premature neonates. Baltadjiev G Anat Anz; 1987; 163(3):243-8. PubMed ID: 3605638 [TBL] [Abstract][Full Text] [Related]
20. Prenatal Exposure to Continuous Constant Light Alters Endochondral Ossification of the Tibiae of Rat Pups. Fontanetti PA; Nervegna MT; Vermouth NT; Mandalunis PM Cells Tissues Organs; 2014; 200(3-4):278-86. PubMed ID: 26278318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]