These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Is the rod visual field temporally homogeneous? Allen D; Hess RF; Nordby K Vision Res; 1998 Dec; 38(24):3927-31. PubMed ID: 10211384 [TBL] [Abstract][Full Text] [Related]
4. Extrinsic cone-mediated post-receptoral noise inhibits the rod temporal impulse response function. Hathibelagal AR; Feigl B; Cao D; Zele AJ J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B72-B77. PubMed ID: 29603925 [TBL] [Abstract][Full Text] [Related]
5. Human scotopic sensitivity is regulated postreceptorally by changing the speed of the scotopic response. Stockman A; Candler T; Sharpe LT J Vis; 2010 Feb; 10(2):12.1-19. PubMed ID: 20462313 [TBL] [Abstract][Full Text] [Related]
6. Speed, spatial, and temporal tuning of rod and cone vision in mouse. Umino Y; Solessio E; Barlow RB J Neurosci; 2008 Jan; 28(1):189-98. PubMed ID: 18171936 [TBL] [Abstract][Full Text] [Related]
7. Rod and cone pathway signaling and interaction under mesopic illumination. Zele AJ; Maynard ML; Feigl B J Vis; 2013 Jan; 13(1):. PubMed ID: 23325348 [TBL] [Abstract][Full Text] [Related]
8. The spectral properties of the two rod pathways. Sharpe LT; Fach CC; Stockman A Vision Res; 1993 Dec; 33(18):2705-20. PubMed ID: 8296467 [TBL] [Abstract][Full Text] [Related]
9. Rod and cone contrast gains derived from reaction time distribution modeling. Cao D; Pokorny J J Vis; 2010 Feb; 10(2):11.1-15. PubMed ID: 20462312 [TBL] [Abstract][Full Text] [Related]
10. Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Stockman A; Sharpe LT Ophthalmic Physiol Opt; 2006 May; 26(3):225-39. PubMed ID: 16684149 [TBL] [Abstract][Full Text] [Related]
11. Flicker VEPs reflecting multiple rod and cone pathways. Rudvin I; Valberg A Vision Res; 2006 Mar; 46(5):699-717. PubMed ID: 16171839 [TBL] [Abstract][Full Text] [Related]
13. Mesopic spectral sensitivity functions based on visibility and recognition contrast thresholds. Várady G; Bodrogi P Ophthalmic Physiol Opt; 2006 May; 26(3):246-53. PubMed ID: 16684151 [TBL] [Abstract][Full Text] [Related]
14. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function. Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833 [TBL] [Abstract][Full Text] [Related]
15. Spatial and temporal properties of human rod vision in the achromat. Hess RF; Nordby K J Physiol; 1986 Feb; 371():387-406. PubMed ID: 3486272 [TBL] [Abstract][Full Text] [Related]
16. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways. Hathibelagal AR; Feigl B; Zele AJ J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B78-B84. PubMed ID: 29603926 [TBL] [Abstract][Full Text] [Related]
17. Cone pathways and the pi 0 and pi 0' rod mechanisms. Knight R; Buck SL Vision Res; 1993 Nov; 33(16):2203-13. PubMed ID: 8273287 [TBL] [Abstract][Full Text] [Related]
18. Influence of rod signals on hue perception: evidence from successive scotopic contrast. Buck SL Vision Res; 1997 May; 37(10):1295-301. PubMed ID: 9205721 [TBL] [Abstract][Full Text] [Related]
19. Long-range suppressive interactions between S-cone and luminance channels. Wade AR Vision Res; 2009 Jun; 49(12):1554-62. PubMed ID: 19344735 [TBL] [Abstract][Full Text] [Related]
20. Regional variation of contrast sensitivity across the retina of the achromat: sensitivity of human rod vision. Hess RF; Nordby K; Pointer JS J Physiol; 1987 Jul; 388():101-19. PubMed ID: 3498832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]