BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8855800)

  • 1. Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes.
    Musso NR; Brenci S; Setti M; Indiveri F; Lotti G
    J Clin Endocrinol Metab; 1996 Oct; 81(10):3553-7. PubMed ID: 8855800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholamine synthesis inhibitors acutely modulate [3H]estradiol binding by specific brain areas and pituitary in ovariectomized rats.
    Thompson MA; Woolley DE; Gietzen DW; Conway S
    Endocrinology; 1983 Sep; 113(3):855-65. PubMed ID: 6135604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function.
    Qiu YH; Peng YP; Jiang JM; Wang JJ
    Neuroimmunomodulation; 2004; 11(2):75-83. PubMed ID: 14758053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-tyrosine and nicotine induce synthesis of L-Dopa and norepinephrine in human lymphocytes.
    Musso NR; Brenci S; Indiveri F; Lotti G
    J Neuroimmunol; 1997 Apr; 74(1-2):117-20. PubMed ID: 9119963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesangial cells are able to produce catecholamines in vitro.
    Di Marco GS; Naffah-Mazzacoratti Md Mda G; Vio CP; Dos Santos OF; Schor N; Casarini DE
    J Cell Biochem; 2003 May; 89(1):144-51. PubMed ID: 12682915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro study on catecholamine modulation of ovarian steroidogenic activity in the catfish Heteropneustes fossilis.
    Joy KP; Singh V; Chaube R
    Gen Comp Endocrinol; 2014 Jan; 196():91-9. PubMed ID: 24316301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The brain catecholamine systems in the regulation of dominance].
    Serova LI; Naumenko EV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(3):490-6. PubMed ID: 1975967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis.
    Josefsson E; Bergquist J; Ekman R; Tarkowski A
    Immunology; 1996 May; 88(1):140-6. PubMed ID: 8707341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative catecholamine pathways after tyrosine hydroxylase inhibition in malignant pheochromocytoma.
    Kuchel O; Buu NT; Edwards DJ
    J Lab Clin Med; 1990 Apr; 115(4):449-53. PubMed ID: 1969915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-related effects of various inhibitors of catecholamine synthesis in the mouse.
    Thornburg JE; Moore KE
    Arch Int Pharmacodyn Ther; 1971 Nov; 194(1):158-67. PubMed ID: 4399378
    [No Abstract]   [Full Text] [Related]  

  • 11. Regional distribution and control of tyrosine hydroxylase activity in the quail brain.
    Baillien M; Foidart A; Balthazart J
    Brain Res Bull; 1999 Jan; 48(1):31-7. PubMed ID: 10210165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and release of catecholamines by cultured monkey amniotic epithelial cells.
    Elwan MA; Thangavel R; Ono F; Sakuragawa N
    J Neurosci Res; 1998 Jul; 53(1):107-13. PubMed ID: 9670997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats.
    Ugrumov MV; Melnikova VI; Lavrentyeva AV; Kudrin VS; Rayevsky KS
    Neuroscience; 2004; 124(3):629-35. PubMed ID: 14980733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdialysis monitoring of 3,4-dihydroxyphenylalanine accumulation after decarboxylase inhibition: a means to estimate in vivo changes in tyrosine hydroxylase activity of the rat locus ceruleus.
    Robert F; Lambás-Señas L; Ortemann C; Pujol JF; Renaud B
    J Neurochem; 1993 Feb; 60(2):721-9. PubMed ID: 8093483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of catecholamine biosynthesis in a transplantable rat pheochromocytoma.
    Chalfie M; Perlman RL
    J Pharmacol Exp Ther; 1977 Mar; 200(3):588-97. PubMed ID: 15098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothalamic catecholamine biosynthesis in vitro as measured by liquid chromatography and electrochemical detection.
    Sundberg DK; Bennett B; Wendel OT; Morris M
    Res Commun Chem Pathol Pharmacol; 1980 Sep; 29(3):599-602. PubMed ID: 7423028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-dopa facilitates the release of endogenous norepinephrine and dopamine via presynaptic beta 1- and beta 2-adrenoceptors under essentially complete inhibition of L-aromatic amino acid decarboxylase in rat hypothalamic slices.
    Goshima Y; Nakamura S; Misu Y
    Jpn J Pharmacol; 1990 May; 53(1):47-56. PubMed ID: 1972204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of LHRH on rat conditioned avoidance behavior: interaction with brain catecholamines.
    Nasello AG; Bydlowski CR; Felicio LF
    Pharmacol Biochem Behav; 1990 Dec; 37(4):639-42. PubMed ID: 1982693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine and L-dopa: inhibition of thyrotropin-stimulated thyroidal thyroxine release.
    Maayan ML; Sellitto RV; Volpert EM
    Endocrinology; 1986 Feb; 118(2):632-6. PubMed ID: 2867890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poststimulation catecholamine synthesis and tyrosine hydroxylase activation in central noradrenergic neurons. I. In vivo stimulation of the locus coeruleus.
    Salzman PM; Roth RH
    J Pharmacol Exp Ther; 1980 Jan; 212(1):64-73. PubMed ID: 6101343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.