These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 8855943)
1. Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Sato H; Ikeda M; Suzuki K; Hirayama K Biochemistry; 1996 Oct; 35(40):13072-80. PubMed ID: 8855943 [TBL] [Abstract][Full Text] [Related]
2. Unique substrate specificities of two adjacent glutamine residues in EAQQIVM for transglutaminase: identification and characterization of the reaction products by electrospray ionization tandem mass spectrometry. Sato H; Yamada N; Shimba N; Takahara Y Anal Biochem; 2000 May; 281(1):68-76. PubMed ID: 10847612 [TBL] [Abstract][Full Text] [Related]
3. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Fontana A; Spolaore B; Mero A; Veronese FM Adv Drug Deliv Rev; 2008 Jan; 60(1):13-28. PubMed ID: 17916398 [TBL] [Abstract][Full Text] [Related]
4. Transglutaminase-mediated N- and C-terminal fluorescein labeling of a protein can support the native activity of the modified protein. Taki M; Shiota M; Taira K Protein Eng Des Sel; 2004 Feb; 17(2):119-26. PubMed ID: 15047907 [TBL] [Abstract][Full Text] [Related]
5. Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2. Sato H; Yamamoto K; Hayashi E; Takahara Y Bioconjug Chem; 2000; 11(4):502-9. PubMed ID: 10898571 [TBL] [Abstract][Full Text] [Related]
6. Further studies on the site-specific protein modification by microbial transglutaminase. Sato H; Hayashi E; Yamada N; Yatagai M; Takahara Y Bioconjug Chem; 2001; 12(5):701-10. PubMed ID: 11562188 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic procedure for site-specific pegylation of proteins. Sato H Adv Drug Deliv Rev; 2002 Jun; 54(4):487-504. PubMed ID: 12052711 [TBL] [Abstract][Full Text] [Related]
8. Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine. Zehl M; Lescić I; Abramić M; Rizzi A; Kojić-Prodić B; Allmaier G J Mass Spectrom; 2004 Dec; 39(12):1474-83. PubMed ID: 15578758 [TBL] [Abstract][Full Text] [Related]
9. Semisynthesis and application of carboxyfluorescein-labelled biologically active human interleukin-8. David R; Machova Z; Beck-Sickinger AG Biol Chem; 2003 Dec; 384(12):1619-30. PubMed ID: 14719805 [TBL] [Abstract][Full Text] [Related]
10. Identification of proteins separated by one-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis with matrix-assisted laser desorption/ionization ion trap mass spectrometry; comparison with matrix-assisted laser desorption/ionization time-of-flight mass fingerprinting. Zeng R; Chen YB; Shao XX; Shieh CH; Miller K; Tran H; Xia QC Rapid Commun Mass Spectrom; 2003; 17(17):1995-2004. PubMed ID: 12913863 [TBL] [Abstract][Full Text] [Related]
12. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Davis CA; Dhawan IK; Johnson MK; Barber MJ Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972 [TBL] [Abstract][Full Text] [Related]
13. Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates. Case A; Stein RL Biochemistry; 2003 Aug; 42(31):9466-81. PubMed ID: 12899634 [TBL] [Abstract][Full Text] [Related]
14. Selective isolation of N-terminal peptides from proteins and their de novo sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without regard to unblocking or blocking of N-terminal amino acids. Yamaguchi M; Nakayama D; Shima K; Kuyama H; Ando E; Okamura TA; Ueyama N; Nakazawa T; Norioka S; Nishimura O; Tsunasawa S Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3313-9. PubMed ID: 18821723 [TBL] [Abstract][Full Text] [Related]
15. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Iismaa SE; Chung L; Wu MJ; Teller DC; Yee VC; Graham RM Biochemistry; 1997 Sep; 36(39):11655-64. PubMed ID: 9305955 [TBL] [Abstract][Full Text] [Related]
16. Charge derivatization by 4-sulfophenyl isothiocyanate enhances peptide sequencing by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Marekov LN; Steinert PM J Mass Spectrom; 2003 Apr; 38(4):373-7. PubMed ID: 12717748 [TBL] [Abstract][Full Text] [Related]
17. Transglutaminase catalyses the modification of glutamine side chains in the C-terminal region of bovine beta-lactoglobulin. Coussons PJ; Price NC; Kelly SM; Smith B; Sawyer L Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):803-6. PubMed ID: 1350436 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel phosphorylation site in human androgen receptor by mass spectrometry. Zhu Z; Becklin RR; Desiderio DM; Dalton JT Biochem Biophys Res Commun; 2001 Jun; 284(3):836-44. PubMed ID: 11396978 [TBL] [Abstract][Full Text] [Related]
19. Identification of multiple target sites for a glutathione conjugate on glutathione-S-transferase by matrix-assisted laser desorption/ionization mass spectrometry. Jespersen S; Ploemen JH; van Bladeren PJ; Niessen WM; Tjaden UR; van der Greef J J Mass Spectrom; 1996 Jan; 31(1):101-7. PubMed ID: 8925505 [TBL] [Abstract][Full Text] [Related]
20. Characterization of amine donor and acceptor sites for tissue type transglutaminase using a sequence from the C-terminus of human fibrillin-1 and the N-terminus of osteonectin. Khew ST; Panengad PP; Raghunath M; Tong YW Biomaterials; 2010 Jun; 31(16):4600-8. PubMed ID: 20223517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]