BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8855946)

  • 1. Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example.
    Pancoska P; Fabian H; Yoder G; Baumruk V; Keiderling TA
    Biochemistry; 1996 Oct; 35(40):13094-106. PubMed ID: 8855946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra.
    Pancoska P; Janota V; Keiderling TA
    Anal Biochem; 1999 Feb; 267(1):72-83. PubMed ID: 9918657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution.
    Dong A; Kendrick B; Kreilgârd L; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1997 Nov; 347(2):213-20. PubMed ID: 9367527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional mid-IR and near-IR correlation spectra of ribonuclease A: using overtones and combination modes to monitor changes in secondary structure.
    Schultz CP; Fabian H; Mantsch HH
    Biospectroscopy; 1998; 4(5 Suppl):S19-29. PubMed ID: 9787911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O.
    Baumruk V; Pancoska P; Keiderling TA
    J Mol Biol; 1996 Jun; 259(4):774-91. PubMed ID: 8683582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal unfolding of ribonuclease T1 studied by multi-dimensional NMR spectroscopy.
    Matsuura H; Shimotakahara S; Sakuma C; Tashiro M; Shindo H; Mochizuki K; Yamagishi A; Kojima M; Takahashi K
    Biol Chem; 2004 Dec; 385(12):1157-64. PubMed ID: 15653428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of alanine-rich peptides, Ac-(AAKAA)n-GY-NH2 (n = 1-4), using vibrational circular dichroism and Fourier transform infrared. Conformational determination and thermal unfolding.
    Yoder G; Pancoska P; Keiderling TA
    Biochemistry; 1997 Dec; 36(49):15123-33. PubMed ID: 9398240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea denaturation of staphylococcal nuclease monitored by Fourier transform infrared spectroscopy.
    From NB; Bowler BE
    Biochemistry; 1998 Feb; 37(6):1623-31. PubMed ID: 9484233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine cerebroside sulfate activator (saposin B) secondary structure: CD, FTIR, and NMR studies.
    Waring AJ; Chen Y; Faull KF; Stevens R; Sherman MA; Fluharty AL
    Mol Genet Metab; 1998 Jan; 63(1):14-25. PubMed ID: 9538512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative reconstruction of the amide I contour in the IR spectra of globular proteins: from structure to spectrum.
    Brauner JW; Flach CR; Mendelsohn R
    J Am Chem Soc; 2005 Jan; 127(1):100-9. PubMed ID: 15631459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trifluoroethanol-induced unfolding of concanavalin A: equilibrium and time-resolved optical spectroscopic studies.
    Xu Q; Keiderling TA
    Biochemistry; 2005 Jun; 44(22):7976-87. PubMed ID: 15924416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal unfolding of ribonuclease A in phosphate at neutral pH: deviations from the two-state model.
    Stelea SD; Pancoska P; Benight AS; Keiderling TA
    Protein Sci; 2001 May; 10(5):970-8. PubMed ID: 11316877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-induced unfolding of ribonuclease A embedded in spherical polyelectrolyte brushes.
    Wittemann A; Ballauff M
    Macromol Biosci; 2005 Jan; 5(1):13-20. PubMed ID: 15633159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical spectroscopic investigations of model beta-sheet hairpins in aqueous solution.
    Hilario J; Kubelka J; Keiderling TA
    J Am Chem Soc; 2003 Jun; 125(25):7562-74. PubMed ID: 12812496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR study of the thermal denaturation of alpha-actinin in its lipid-free and dioleoylphosphatidylglycerol-bound states and the central and N-terminal domains of alpha-actinin in D2O.
    Han X; Li G; Li G; Lin K
    Biochemistry; 1998 Jul; 37(30):10730-7. PubMed ID: 9692963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced prediction accuracy of protein secondary structure using hydrogen exchange Fourier transform infrared spectroscopy.
    Baello BI; Pancoska P; Keiderling TA
    Anal Biochem; 2000 Apr; 280(1):46-57. PubMed ID: 10805520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.