These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8855952)
1. Substrate specificity of Escherichia coli MutY protein. Bulychev NV; Varaprasad CV; Dormán G; Miller JH; Eisenberg M; Grollman AP; Johnson F Biochemistry; 1996 Oct; 35(40):13147-56. PubMed ID: 8855952 [TBL] [Abstract][Full Text] [Related]
2. MutY DNA glycosylase: base release and intermediate complex formation. Zharkov DO; Grollman AP Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810 [TBL] [Abstract][Full Text] [Related]
3. Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY. Manuel RC; Lloyd RS Biochemistry; 1997 Sep; 36(37):11140-52. PubMed ID: 9287157 [TBL] [Abstract][Full Text] [Related]
4. Purification of a mammalian homologue of Escherichia coli endonuclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNAse/AP lyase by irreversible cross linking to a thymine glycol-containing oligoxynucleotide. Hilbert TP; Boorstein RJ; Kung HC; Bolton PH; Xing D; Cunningham RP; Teebor GW Biochemistry; 1996 Feb; 35(8):2505-11. PubMed ID: 8611553 [TBL] [Abstract][Full Text] [Related]
5. What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Singer B; Hang B Chem Res Toxicol; 1997 Jul; 10(7):713-32. PubMed ID: 9250405 [TBL] [Abstract][Full Text] [Related]
6. Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition. Gogos A; Cillo J; Clarke ND; Lu AL Biochemistry; 1996 Dec; 35(51):16665-71. PubMed ID: 8988002 [TBL] [Abstract][Full Text] [Related]
7. The ring fragmentation product of thymidine C5-hydrate when present in DNA is repaired by the Escherichia coli Fpg and Nth proteins. Jurado J; Saparbaev M; Matray TJ; Greenberg MM; Laval J Biochemistry; 1998 May; 37(21):7757-63. PubMed ID: 9601036 [TBL] [Abstract][Full Text] [Related]
8. Characterization of DNA strand cleavage by enzymes that act at abasic sites in DNA. Deutsch WA; Yacoub A Methods Mol Biol; 1999; 113():281-8. PubMed ID: 10443427 [No Abstract] [Full Text] [Related]
9. Evidence for a common active site for cleavage of an AP site and the benzene-derived exocyclic adduct, 3,N4-benzetheno-dC, in the major human AP endonuclease. Hang B; Rothwell DG; Sagi J; Hickson ID; Singer B Biochemistry; 1997 Dec; 36(49):15411-8. PubMed ID: 9398271 [TBL] [Abstract][Full Text] [Related]
10. Passing the baton in base excision repair. Wilson SH; Kunkel TA Nat Struct Biol; 2000 Mar; 7(3):176-8. PubMed ID: 10700268 [No Abstract] [Full Text] [Related]
11. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY. Golinelli MP; Chmiel NH; David SS Biochemistry; 1999 Jun; 38(22):6997-7007. PubMed ID: 10353811 [TBL] [Abstract][Full Text] [Related]
12. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. Tchou J; Bodepudi V; Shibutani S; Antoshechkin I; Miller J; Grollman AP; Johnson F J Biol Chem; 1994 May; 269(21):15318-24. PubMed ID: 7515054 [TBL] [Abstract][Full Text] [Related]
13. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III). Shida T; Noda M; Sekiguchi J Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565 [TBL] [Abstract][Full Text] [Related]
14. Positively charged residues within the iron-sulfur cluster loop of E. coli MutY participate in damage recognition and removal. Chepanoske CL; Golinelli MP; Williams SD; David SS Arch Biochem Biophys; 2000 Aug; 380(1):11-9. PubMed ID: 10900127 [TBL] [Abstract][Full Text] [Related]
15. A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY. Porello SL; Cannon MJ; David SS Biochemistry; 1998 May; 37(18):6465-75. PubMed ID: 9572864 [TBL] [Abstract][Full Text] [Related]
16. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. Pope MA; Porello SL; David SS J Biol Chem; 2002 Jun; 277(25):22605-15. PubMed ID: 11960995 [TBL] [Abstract][Full Text] [Related]
17. A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity. Williams SD; David SS Biochemistry; 2000 Aug; 39(33):10098-109. PubMed ID: 10955998 [TBL] [Abstract][Full Text] [Related]
18. Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli. Zharkov DO; Gilboa R; Yagil I; Kycia JH; Gerchman SE; Shoham G; Grollman AP Biochemistry; 2000 Dec; 39(48):14768-78. PubMed ID: 11101292 [TBL] [Abstract][Full Text] [Related]
19. Assays for the repair of oxidative damage by formamidopyrimidine glycosylase (Fpg) and 8-oxoguanine DNA glycosylase (OGG-1). Watson AJ; Margison GP Methods Mol Biol; 2000; 152():17-32. PubMed ID: 10957965 [No Abstract] [Full Text] [Related]
20. Escherichia coli MutY and Fpg utilize a processive mechanism for target location. Francis AW; David SS Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]