BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8855956)

  • 21. TolA: a membrane protein involved in colicin uptake contains an extended helical region.
    Levengood SK; Beyer WF; Webster RE
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):5939-43. PubMed ID: 2068069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli.
    Zeth K; Römer C; Patzer SI; Braun V
    J Biol Chem; 2008 Sep; 283(37):25324-25331. PubMed ID: 18640984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468.
    Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ
    J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide: unfolding of local segments using genetically substituted tryptophan residues.
    Steer BA; Merrill AR
    Biochemistry; 1995 May; 34(21):7225-33. PubMed ID: 7766633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A single tryptic fragment of colicin E1 can form an ion channel: stoichiometry confirms kinetics.
    Levinthal F; Todd AP; Hubbell WL; Levinthal C
    Proteins; 1991; 11(4):254-62. PubMed ID: 1722045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution.
    Parker MW; Postma JP; Pattus F; Tucker AD; Tsernoglou D
    J Mol Biol; 1992 Apr; 224(3):639-57. PubMed ID: 1373773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide.
    Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping a membrane-associated conformation of colicin Ia.
    Mel SF; Falick AM; Burlingame AL; Stroud RM
    Biochemistry; 1993 Sep; 32(36):9473-9. PubMed ID: 7690252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization.
    Dankert JR; Uratani Y; Grabau C; Cramer WA; Hermodson M
    J Biol Chem; 1982 Apr; 257(7):3857-63. PubMed ID: 7037787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colicin N and its thermolytic fragment induce phospholipid vesicle fusion.
    Massotte D; Pattus F
    FEBS Lett; 1989 Nov; 257(2):447-50. PubMed ID: 2684693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study.
    Jeanteur D; Pattus F; Timmins PA
    J Mol Biol; 1994 Jan; 235(3):898-907. PubMed ID: 7507175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The membrane channel-forming bacteriocidal protein, colicin El.
    Cramer WA; Dankert JR; Uratani Y
    Biochim Biophys Acta; 1983 Mar; 737(1):173-93. PubMed ID: 6297581
    [No Abstract]   [Full Text] [Related]  

  • 33. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering.
    Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D
    J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.
    Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y
    J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel approaches to the mode of action of colicins.
    Smarda J
    Folia Microbiol (Praha); 1975; 20(3):264-71. PubMed ID: 1095464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pH-induced increase in hydrophobicity as a possible step in the penetration of colicin E3 through bacterial membranes.
    Escuyer V; Boquet P; Perrin D; Montecucco C; Mock M
    J Biol Chem; 1986 Aug; 261(23):10891-8. PubMed ID: 3525556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid pH responses of Escherichia coli: inhibition of colicin V synthesis and activity at pH 5.0.
    Rowbury RJ; Goodson M
    Microbios; 1994; 80(324):189-202. PubMed ID: 7891596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-dependent membrane fusion is promoted by various colicins.
    Pattus F; Cavard D; Crozel V; Baty D; Adrian M; Lazdunski C
    EMBO J; 1985 Oct; 4(10):2469-74. PubMed ID: 3902468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent.
    Bourdineaud JP; Boulanger P; Lazdunski C; Letellier L
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1037-41. PubMed ID: 2105493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular, genetic and immunological approach to the functioning of colicin A, a pore-forming protein.
    Cavard D; Crozel V; Gorvel JP; Pattus F; Baty D; Lazdunski C
    J Mol Biol; 1986 Feb; 187(3):449-59. PubMed ID: 2422387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.