These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1002 related articles for article (PubMed ID: 8855958)
1. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Kiyota T; Lee S; Sugihara G Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958 [TBL] [Abstract][Full Text] [Related]
2. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance. Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327 [TBL] [Abstract][Full Text] [Related]
3. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
4. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
6. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751 [TBL] [Abstract][Full Text] [Related]
7. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Jin Y; Mozsolits H; Hammer J; Zmuda E; Zhu F; Zhang Y; Aguilar MI; Blazyk J Biochemistry; 2003 Aug; 42(31):9395-405. PubMed ID: 12899626 [TBL] [Abstract][Full Text] [Related]
8. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers. Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807 [TBL] [Abstract][Full Text] [Related]
9. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
10. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
11. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Wyman TB; Nicol F; Zelphati O; Scaria PV; Plank C; Szoka FC Biochemistry; 1997 Mar; 36(10):3008-17. PubMed ID: 9062132 [TBL] [Abstract][Full Text] [Related]
12. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J; Lew S; Wang J; London E Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543 [TBL] [Abstract][Full Text] [Related]
13. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
14. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Mishra VK; Palgunachari MN Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526 [TBL] [Abstract][Full Text] [Related]
15. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related]
16. Importance of hydrophobic region in amphiphilic structures of alpha-helical peptides for their gene transfer-ability into cells. Ohmori N; Niidome T; Kiyota T; Lee S; Sugihara G; Wada A; Hirayama T; Aoyagi H Biochem Biophys Res Commun; 1998 Apr; 245(1):259-65. PubMed ID: 9535819 [TBL] [Abstract][Full Text] [Related]
17. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
18. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
19. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907 [TBL] [Abstract][Full Text] [Related]
20. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]