These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 8855962)
21. The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes. Livshits L; Caduff A; Talary MS; Lutz HU; Hayashi Y; Puzenko A; Shendrik A; Feldman Y J Phys Chem B; 2009 Feb; 113(7):2212-20. PubMed ID: 19166280 [TBL] [Abstract][Full Text] [Related]
22. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644 [TBL] [Abstract][Full Text] [Related]
23. Transport of D-allose by isolated fat-cells: an effect of adenosine triphosphate on insulin stimulated transport. Loten EG; Regen DM; Park CR J Cell Physiol; 1976 Dec; 89(4):651-60. PubMed ID: 1010856 [TBL] [Abstract][Full Text] [Related]
24. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods. Li XB; Szerencsei RT; Schnetkamp PP Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380 [TBL] [Abstract][Full Text] [Related]
25. The effects of phenytoin and its metabolite 5-(4-hydroxyphenyl)-5-phenylhydantoin on cellular glucose transport. Wong HY; Chu TS; Chan YW; Fok TF; Fung LW; Fung KP; Ho YY Life Sci; 2005 Mar; 76(16):1859-72. PubMed ID: 15698863 [TBL] [Abstract][Full Text] [Related]
26. Effect of GLUT1 glucose transporter overexpression on the stimulation of glucose transport in response to inhibition of oxidative phosphorylation. Ismail-Beigi F; Vanderburg G Arch Biochem Biophys; 1996 Jul; 331(2):201-7. PubMed ID: 8660699 [TBL] [Abstract][Full Text] [Related]
27. ATP-dependent sugar transport complexity in human erythrocytes. Leitch JM; Carruthers A Am J Physiol Cell Physiol; 2007 Feb; 292(2):C974-86. PubMed ID: 16928769 [TBL] [Abstract][Full Text] [Related]
28. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine. Hellwig B; Joost HG Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731 [TBL] [Abstract][Full Text] [Related]
29. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport. Heard KS; Diguette M; Heard AC; Carruthers A Exp Physiol; 1998 Mar; 83(2):195-202. PubMed ID: 9568479 [TBL] [Abstract][Full Text] [Related]
30. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
31. Activation of Glut1 glucose transporter in response to inhibition of oxidative phosphorylation. Hamrahian AH; Zhang JZ; Elkhairi FS; Prasad R; Ismail-Beigi F Arch Biochem Biophys; 1999 Aug; 368(2):375-9. PubMed ID: 10441390 [TBL] [Abstract][Full Text] [Related]
32. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro. Klepper J; Flörcken A; Fischbarg J; Voit T Eur J Pediatr; 2003 Feb; 162(2):84-9. PubMed ID: 12548383 [TBL] [Abstract][Full Text] [Related]
33. The human erythrocyte sugar transporter presents two sugar import sites. Hamill S; Cloherty EK; Carruthers A Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533 [TBL] [Abstract][Full Text] [Related]
34. Defective P2Y purinergic receptor function: A possible novel mechanism for impaired glucose transport. Solini A; Chiozzi P; Morelli A; Passaro A; Fellin R; Di Virgilio F J Cell Physiol; 2003 Dec; 197(3):435-44. PubMed ID: 14566973 [TBL] [Abstract][Full Text] [Related]
35. Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins. Pérez A; Ojeda P; Ojeda L; Salas M; Rivas CI; Vera JC; Reyes AM Biochemistry; 2011 Oct; 50(41):8834-45. PubMed ID: 21899256 [TBL] [Abstract][Full Text] [Related]
36. Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. Cura AJ; Carruthers A J Biol Chem; 2010 May; 285(20):15430-15439. PubMed ID: 20231288 [TBL] [Abstract][Full Text] [Related]
37. 2,4-Dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone activate the glutathione S-conjugate transport ATPase of human erythrocyte membranes. Winter CG; DeLuca DC; Szumilo H Arch Biochem Biophys; 1994 Oct; 314(1):17-22. PubMed ID: 7944390 [TBL] [Abstract][Full Text] [Related]
38. alpha- and beta-monosaccharide transport in human erythrocytes. Leitch JM; Carruthers A Am J Physiol Cell Physiol; 2009 Jan; 296(1):C151-61. PubMed ID: 18987250 [TBL] [Abstract][Full Text] [Related]
39. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle. Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251 [TBL] [Abstract][Full Text] [Related]
40. Conventional transport assays underestimate sugar transport rates in human red cells. Blodgett DM; Carruthers A Blood Cells Mol Dis; 2004; 32(3):401-7. PubMed ID: 15121099 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]