BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8856077)

  • 21. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells.
    Yokosawa T; Sato A; Wakasugi K
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.
    Miyanokoshi M; Yokosawa T; Wakasugi K
    J Biol Chem; 2018 Jun; 293(22):8428-8438. PubMed ID: 29666190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gamma interferon potently induces tryptophanyl-tRNA synthetase expression in human keratinocytes.
    Reano A; Richard MH; Denoroy L; Viac J; Benedetto JP; Schmitt D
    J Invest Dermatol; 1993 Jun; 100(6):775-9. PubMed ID: 8496617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target.
    Ahn YH; Oh SC; Zhou S; Kim TD
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo and in vitro processing of the Bacillus subtilis transcript coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase.
    Pelchat M; Lapointe J
    RNA; 1999 Feb; 5(2):281-9. PubMed ID: 10024179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the TIGN sequence in E. coli tryptophanyl-tRNA synthetase.
    Chan KW; Koeppe RE
    Biochim Biophys Acta; 1994 Apr; 1205(2):223-9. PubMed ID: 8155701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete structure of the murine p36 (annexin II) gene. Identification of mRNAs for both the murine and the human gene with alternatively spliced 5' noncoding exons.
    Fey MF; Moffat GJ; Vik DP; Meisenhelder J; Saris CJ; Hunter T; Tack BF
    Biochim Biophys Acta; 1996 May; 1306(2-3):160-70. PubMed ID: 8634333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mammalian tryptophanyl-tRNA synthetase is associated with protein kinase activity.
    Paley EL
    Eur J Biochem; 1997 Mar; 244(3):780-8. PubMed ID: 9108248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts.
    Rubin BY; Anderson SL; Xing L; Powell RJ; Tate WP
    J Biol Chem; 1991 Dec; 266(36):24245-8. PubMed ID: 1761529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotypic variants of the interferon-inducible transcriptional repressor IFI 16 arise through differential mRNA splicing.
    Johnstone RW; Kershaw MH; Trapani JA
    Biochemistry; 1998 Aug; 37(34):11924-31. PubMed ID: 9718316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human erythroid 5-aminolevulinate synthase. Gene structure and species-specific differences in alternative RNA splicing.
    Conboy JG; Cox TC; Bottomley SS; Bawden MJ; May BK
    J Biol Chem; 1992 Sep; 267(26):18753-8. PubMed ID: 1527005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptophanyl-Transfer RNA Synthetase Is Involved in a Negative Feedback Loop Mitigating Interferon-γ-Induced Gene Expression.
    Lazar I; Livneh I; Ciechanover A; Fabre B
    Cells; 2024 Jan; 13(2):. PubMed ID: 38247871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal SH-SY5Y cells use the C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing including two intronic insertion events.
    Nishida A; Minegishi M; Takeuchi A; Awano H; Niba ET; Matsuo M
    Hum Genet; 2015 Sep; 134(9):993-1001. PubMed ID: 26152642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posttranscriptional mRNA processing as a mechanism for regulation of human A1 adenosine receptor expression.
    Ren H; Stiles GL
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4864-66. PubMed ID: 8197148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the human and mouse genes for the alpha subunit of type II prolyl 4-hydroxylase. Identification of a previously unknown alternatively spliced exon and its expression in various tissues.
    Nokelainen M; Nissi R; Kukkola L; Helaakoski T; Myllyharju J
    Eur J Biochem; 2001 Oct; 268(20):5300-9. PubMed ID: 11606192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of alternately spliced messenger RNA of the luteinizing hormone receptor and stability of the follicle-stimulating hormone receptor messenger RNA in granulosa cell tumors of the human ovary.
    Reinholz MM; Zschunke MA; Roche PC
    Gynecol Oncol; 2000 Nov; 79(2):264-71. PubMed ID: 11063655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The kinin B(2) receptor gene structure, product processing and expression in adult and fetal rats: evidence for gene evolution.
    França CE; Vicari CF; Piza AM; Geroldo EA; Beçak ML; Beçak W; Stocco RC; Lindsey CJ
    Genet Mol Res; 2010 Feb; 9(1):215-30. PubMed ID: 20198577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.
    Vincent C; Tarbouriech N; Härtlein M
    Eur J Biochem; 1997 Nov; 250(1):77-84. PubMed ID: 9431993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.