These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8857543)

  • 21. Non-homologous DNA end joining.
    Pastwa E; Błasiak J
    Acta Biochim Pol; 2003; 50(4):891-908. PubMed ID: 14739985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment (review).
    Rothkamm K; Löbrich M
    Int J Oncol; 2002 Aug; 21(2):433-40. PubMed ID: 12118342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.
    Letavayová L; Marková E; Hermanská K; Vlcková V; Vlasáková D; Chovanec M; Brozmanová J
    DNA Repair (Amst); 2006 May; 5(5):602-10. PubMed ID: 16515894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease.
    Nickoloff JA; Brenneman MA
    Methods Mol Biol; 2004; 262():35-52. PubMed ID: 14769955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitotic recombination in Saccharomyces cerevisiae.
    Prado F; Cortés-Ledesma F; Huertas P; Aguilera A
    Curr Genet; 2003 Jan; 42(4):185-98. PubMed ID: 12589470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of RNA-templated double-strand break repair in yeast.
    Shen Y; Storici F
    Methods Mol Biol; 2011; 745():193-204. PubMed ID: 21660696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patching broken chromosomes with extranuclear cellular DNA.
    Yu X; Gabriel A
    Mol Cell; 1999 Nov; 4(5):873-81. PubMed ID: 10619034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3.
    Rausch JW; Miller JT; Le Grice SF
    Viruses; 2017 Mar; 9(3):. PubMed ID: 28294975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes.
    Ono R; Ishii M; Fujihara Y; Kitazawa M; Usami T; Kaneko-Ishino T; Kanno J; Ikawa M; Ishino F
    Sci Rep; 2015 Jul; 5():12281. PubMed ID: 26216318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome.
    Onozawa M; Zhang Z; Kim YJ; Goldberg L; Varga T; Bergsagel PL; Kuehl WM; Aplan PD
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7729-34. PubMed ID: 24821809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperation between reverse transcriptase and integrase during reverse transcription and formation of the preintegrative complex of Ty1.
    Wilhelm M; Wilhelm FX
    Eukaryot Cell; 2006 Oct; 5(10):1760-9. PubMed ID: 17031000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-templated DNA repair.
    Storici F; Bebenek K; Kunkel TA; Gordenin DA; Resnick MA
    Nature; 2007 May; 447(7142):338-41. PubMed ID: 17429354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of hepatitis B virus polymerase in Ty1-his3AI retroelement of Saccharomyces cerevisiae.
    Qadri I; Siddiqui A
    J Biol Chem; 1999 Oct; 274(44):31359-65. PubMed ID: 10531336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair.
    Srikanta D; Sen SK; Huang CT; Conlin EM; Rhodes RM; Batzer MA
    Genomics; 2009 Mar; 93(3):205-12. PubMed ID: 18951971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements.
    Qi L; Sui Y; Tang XX; McGinty RJ; Liang XZ; Dominska M; Zhang K; Mirkin SM; Zheng DQ; Petes TD
    PLoS Genet; 2023 Jan; 19(1):e1010590. PubMed ID: 36701275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reverse transcriptase encoded by a retrotransposon from the trypanosomatid Crithidia fasciculata.
    Gabriel A; Boeke JD
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9794-8. PubMed ID: 1719539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mammalian genome shaping activity of reverse transcriptase.
    Nouvel P
    Genetica; 1994; 93(1-3):191-201. PubMed ID: 7529206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities.
    Kines KJ; Sokolowski M; DeFreece C; Shareef A; deHaro DL; Belancio VP
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional reverse transcriptases encoded by A-type mouse LINE-1: defining the minimal domain by deletion analysis.
    Martin SL; Li J; Epperson LE; Lieberman B
    Gene; 1998 Jul; 215(1):69-75. PubMed ID: 9666081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HIV reverse transcription in yeast.
    Nissley DV; Garfinkel DJ; Strathern JN
    Nature; 1996 Mar; 380(6569):30. PubMed ID: 8598898
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.