These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8858718)

  • 1. Effects of tissue conductivity variations on the cardiac magnetic fields simulated with a realistic heart-torso model.
    Czapski P; Ramon C; Huntsman LL; Bardy GH; Kim Y
    Phys Med Biol; 1996 Aug; 41(8):1247-63. PubMed ID: 8858718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCG simulations with a realistic heart-torso model.
    Ramon C; Czapski P; Haueisen J; Huntsman LL; Nowak H; Bardy GH; Leder U; Kim Y; Nelson JA
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1323-31. PubMed ID: 9805831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields.
    Ramon C; Wang Y; Haueisen J; Schimpf P; Jaruvatanadilok S; Ishimaru A
    Phys Med Biol; 2000 May; 45(5):1141-50. PubMed ID: 10843096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the contribution of volume currents to the total magnetic field resulting from the heart excitation process: a simulation study.
    Czapski P; Ramon C; Huntsman LL; Bardy GH; Kim Y
    IEEE Trans Biomed Eng; 1996 Jan; 43(1):95-104. PubMed ID: 8567010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCG simulations of myocardial infarctions with a realistic heart-torso model.
    Czapski P; Ramon C; Haueisen J; Huntsman LL; Nowak H; Bardy GH; Leder U; Kim Y
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1313-22. PubMed ID: 9805830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ranking the influence of tissue conductivities on forward-calculated ECGs.
    Keller DU; Weber FM; Seemann G; Dössel O
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1568-76. PubMed ID: 20659824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biophysical models of the heart electrical activity].
    Baum OV; Voloshin VI; Popov LA
    Biofizika; 2006; 51(6):1069-86. PubMed ID: 17175918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography.
    Throne RD; Olson LG
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1192-200. PubMed ID: 8550061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of EEG and MEG measurements to tissue conductivity.
    Gençer NG; Acar CE
    Phys Med Biol; 2004 Mar; 49(5):701-17. PubMed ID: 15070197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inverse problem in electrocardiography: a model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial potentials.
    Messinger-Rapport BJ; Rudy Y
    IEEE Trans Biomed Eng; 1986 Jul; 33(7):667-76. PubMed ID: 3733124
    [No Abstract]   [Full Text] [Related]  

  • 13. A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue.
    Fischer G; Tilg B; Modre R; Huiskamp GJ; Fetzer J; Rucker W; Wach P
    Ann Biomed Eng; 2000; 28(10):1229-43. PubMed ID: 11144984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric and magnetic fields from two-dimensional anisotropic bisyncytia.
    Sepulveda NG; Wikswo JP
    Biophys J; 1987 Apr; 51(4):557-68. PubMed ID: 3580484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields.
    Gandhi OP; Kang G; Wu D; Lazzi G
    Bioelectromagnetics; 2001 Feb; 22(2):112-21. PubMed ID: 11180257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model.
    Rudy Y; Plonsey R; Liebman J
    Circ Res; 1979 Jan; 44(1):104-11. PubMed ID: 758226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia?
    Johnston BM; Johnston PR
    Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically induced currents in the canine heart: a finite element study.
    Ragan PM; Wang W; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Nov; 42(11):1110-6. PubMed ID: 7498915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac biomagnetic source estimation with a heart-torso model and a trained neural network.
    Ramon C; Casem M
    Phys Med Biol; 1999 Oct; 44(10):2551-63. PubMed ID: 10533928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic source imaging in the human heart: estimating cardiac electrical sources from simulated and measured magnetocardiogram data.
    Wach P; Tilg B; Lafer G; Rucker W
    Med Biol Eng Comput; 1997 May; 35(3):157-66. PubMed ID: 9246845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.