BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8859932)

  • 1. Effects of potassium channel blockers on resting tone in isolated coronary arteries.
    O'Rourke ST
    J Cardiovasc Pharmacol; 1996 May; 27(5):636-42. PubMed ID: 8859932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery.
    Pataricza J; Krassói I; Höhn J; Kun A; Papp JG
    Cardiovasc Drugs Ther; 2003 Mar; 17(2):115-21. PubMed ID: 12975592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of voltage-dependent and Ca(2+)-activated K(+) channels on the regulation of isometric force in porcine coronary artery.
    Shimizu S; Yokoshiki H; Sperelakis N; Paul RJ
    J Vasc Res; 2000; 37(1):16-25. PubMed ID: 10720882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training increases K+-channel contribution to regulation of coronary arterial tone.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1998 Apr; 84(4):1225-33. PubMed ID: 9516188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries.
    Larach DR; Schuler HG
    J Pharmacol Exp Ther; 1993 Oct; 267(1):72-81. PubMed ID: 8229789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-sensitive potassium current in isolated canine coronary smooth muscle cells.
    Buljubasic N; Marijic J; Kampine JP; Bosnjak ZJ
    Can J Physiol Pharmacol; 1994 Mar; 72(3):189-98. PubMed ID: 7520826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats.
    Kolias TJ; Chai S; Webb RC
    Am J Hypertens; 1993 Jun; 6(6 Pt 1):528-33. PubMed ID: 8343237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-independent relaxation to raloxifene in porcine coronary artery.
    Leung HS; Seto SW; Kwan YW; Leung FP; Au AL; Yung LM; Yao X; Huang Y
    Eur J Pharmacol; 2007 Jan; 555(2-3):178-84. PubMed ID: 17113071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis.
    Kinoshita H; Katusic ZS
    Stroke; 1997 Feb; 28(2):433-7; discussion 437-8. PubMed ID: 9040702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirolimus causes relaxation of human vascular smooth muscle: a novel action of sirolimus mediated via ATP-sensitive potassium channels.
    Ghatta S; Tunstall RR; Kareem S; Rahman M; O'Rourke ST
    J Pharmacol Exp Ther; 2007 Mar; 320(3):1204-8. PubMed ID: 17164473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog.
    Asano M; Masuzawa-Ito K; Matsuda T; Suzuki Y; Oyama H; Shibuya M; Sugita K
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1277-85. PubMed ID: 7505329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charybdotoxin-sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats.
    Asano M; Masuzawa-Ito K; Matsuda T
    Br J Pharmacol; 1993 Jan; 108(1):214-22. PubMed ID: 7679030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of adrenergic responses of human vas deferens by K+ channel inhibitors.
    Medina P; Segarra G; Mauricio MD; Vila JM; Chuan P; Lluch S
    Urology; 2010 Dec; 76(6):1518.e7-12. PubMed ID: 20932556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-activated K+ channels in the endothelial cell layer involved in modulation of neurogenic contractions in rat penile arteries.
    Kun A; Martinez AC; Tankó LB; Pataricza J; Papp JG; Simonsen U
    Eur J Pharmacol; 2003 Aug; 474(1):103-15. PubMed ID: 12909201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of tetraethylammonium-induced contraction in the canine coronary artery.
    Nishio M; Kigoshi S; Muramatsu I
    Pharmacology; 1986; 33(5):256-65. PubMed ID: 3025900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries.
    Adaramoye OA; Medeiros IA
    J Smooth Muscle Res; 2009 Feb; 45(1):39-53. PubMed ID: 19377272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potassium currents in human radial artery and their regulation by nitric oxide donor.
    Zhang Y; Tazzeo T; Chu V; Janssen LJ
    Cardiovasc Res; 2006 Jul; 71(2):383-92. PubMed ID: 16716281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phasic contractions of canine and human coronary arteries induced by potassium channel blockers.
    Uchida Y; Nakamura F; Tomaru T; Sumino S; Kato A; Sugimoto T
    Jpn Heart J; 1986 Sep; 27(5):727-40. PubMed ID: 2434672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.