These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8859946)
1. Electrophysiological mechanisms for the antiarrhythmic action of (-)-caryachine in rat heart. Chen L; Su MJ; Wu MH; Lee SS J Cardiovasc Pharmacol; 1996 May; 27(5):740-8. PubMed ID: 8859946 [TBL] [Abstract][Full Text] [Related]
2. Ionic mechanisms for the antiarrhythmic action of cinnamophilin in rat heart. Su MJ; Chen WP; Lo TY; Wu TS J Biomed Sci; 1999; 6(6):376-86. PubMed ID: 10545773 [TBL] [Abstract][Full Text] [Related]
3. Cardiac electrophysiologic and antiarrhythmic actions of a pavine alkaloid derivative, O-methyl-neocaryachine, in rat heart. Chang GJ; Su MJ; Hung LM; Lee SS Br J Pharmacol; 2002 Jun; 136(3):459-71. PubMed ID: 12023949 [TBL] [Abstract][Full Text] [Related]
4. Electrophysiological basis for antiarrhythmic efficacy, positive inotropy and low proarrhythmic potential of (-)-caryachine. Wu MH; Su MJ; Lee SS; Lin LT; Young ML Br J Pharmacol; 1995 Dec; 116(8):3211-8. PubMed ID: 8719798 [TBL] [Abstract][Full Text] [Related]
5. Electrophysiological basis for the antiarrhythmic action and positive inotropy of HA-7, a furoquinoline alkaloid derivative, in rat heart. Su MJ; Chang GJ; Wu MH; Kuo SC Br J Pharmacol; 1997 Dec; 122(7):1285-98. PubMed ID: 9421274 [TBL] [Abstract][Full Text] [Related]
6. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens. Chang GJ; Wu MH; Wu YC; Su MJ Br J Pharmacol; 1996 Aug; 118(7):1571-83. PubMed ID: 8842417 [TBL] [Abstract][Full Text] [Related]
7. In vitro electrophysiological mechanisms for antiarrhythmic efficacy of resveratrol, a red wine antioxidant. Chen WP; Su MJ; Hung LM Eur J Pharmacol; 2007 Jan; 554(2-3):196-204. PubMed ID: 17107672 [TBL] [Abstract][Full Text] [Related]
8. Positive inotropic action of NMDA receptor antagonist (+)-MK801 in rat heart. Huang CF; Su MJ J Biomed Sci; 1999; 6(6):387-98. PubMed ID: 10545774 [TBL] [Abstract][Full Text] [Related]
9. Electrophysiological mechanisms for the antiarrhythmic activities of naloxone on cardiac tissues. Hung CF; Wu MH; Tsai CH; Chu SH; Chi JF; Su MJ Life Sci; 1998; 63(14):1205-19. PubMed ID: 9771910 [TBL] [Abstract][Full Text] [Related]
10. Multiple cellular electrophysiological effects of a novel antiarrhythmic furoquinoline derivative HA-7 [N-benzyl-7-methoxy-2,3,4,9-tetrahydrofuro[2,3-b]quinoline-3,4-dione] in guinea pig cardiac preparations. Chang GJ; Su MJ; Kuo SC; Lin TP; Lee YS J Pharmacol Exp Ther; 2006 Jan; 316(1):380-91. PubMed ID: 16174797 [TBL] [Abstract][Full Text] [Related]
11. Mechanical and electrophysiological effects of a hydroxyphenyl-substituted tetrahydroisoquinoline, SL-1, on isolated rat cardiac tissues. Chang GJ; SU MJ; Lee PH; Lee SS; Liu KC Can J Physiol Pharmacol; 1995 Nov; 73(11):1651-60. PubMed ID: 8789420 [TBL] [Abstract][Full Text] [Related]
12. Piceatannol, a derivative of resveratrol, moderately slows I(Na) inactivation and exerts antiarrhythmic action in ischaemia-reperfused rat hearts. Chen WP; Hung LM; Hsueh CH; Lai LP; Su MJ Br J Pharmacol; 2009 Jun; 157(3):381-91. PubMed ID: 19371352 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the electrophysiological effects of S49, CSH087 and CSH068 in rat ventricular cells. Chen L; Lee CS; Su MJ Proc Natl Sci Counc Repub China B; 1993 Apr; 17(2):48-56. PubMed ID: 7528932 [TBL] [Abstract][Full Text] [Related]
14. Antiarrhythmic and electrophysiological effects of GYKI-16638, a novel N-(phenoxyalkyl)-N-phenylalkylamine, in rabbits. Baczkó I; El-Reyani NE; Farkas A; Virág L; Iost N; Leprán I; Mátyus P; Varró A; Papp JG Eur J Pharmacol; 2000 Sep; 404(1-2):181-90. PubMed ID: 10980278 [TBL] [Abstract][Full Text] [Related]
16. Sodium channel-blocking properties of spiradoline, a kappa receptor agonist, are responsible for its antiarrhythmic action in the rat. Pugsley MK; Saint DA; Hayes ES; Kramer D; Walker MJ J Cardiovasc Pharmacol; 1998 Dec; 32(6):863-74. PubMed ID: 9869491 [TBL] [Abstract][Full Text] [Related]
17. Electrophysiological effects of ivabradine in dog and human cardiac preparations: potential antiarrhythmic actions. Koncz I; Szél T; Bitay M; Cerbai E; Jaeger K; Fülöp F; Jost N; Virág L; Orvos P; Tálosi L; Kristóf A; Baczkó I; Papp JG; Varró A Eur J Pharmacol; 2011 Oct; 668(3):419-26. PubMed ID: 21821019 [TBL] [Abstract][Full Text] [Related]
18. Electromechanical and atrial and ventricular antiarrhythmic actions of CIJ-3-2F, a novel benzyl-furoquinoline vasodilator in rat heart. Chang GJ; Yeh YH; Lin TP; Chang CJ; Chen WJ Br J Pharmacol; 2014 Aug; 171(16):3918-37. PubMed ID: 24820856 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological and mechanical effects of caffeic acid phenethyl ester, a novel cardioprotective agent with antiarrhythmic activity, in guinea-pig heart. Chang GJ; Chang CJ; Chen WJ; Yeh YH; Lee HY Eur J Pharmacol; 2013 Feb; 702(1-3):194-207. PubMed ID: 23396228 [TBL] [Abstract][Full Text] [Related]