These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8860606)

  • 21. Effect of the size of biodegradable microparticles on drug release: experiment and theory.
    Siepmann J; Faisant N; Akiki J; Richard J; Benoit JP
    J Control Release; 2004 Apr; 96(1):123-34. PubMed ID: 15063035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A fibrin encapsulated liposomes-in-chitosan matrix (FLCM) for delivering water-soluble drugs. Influences of the surface properties of liposomes and the crosslinked fibrin network.
    Chung TW; Yang MC; Tsai WJ
    Int J Pharm; 2006 Mar; 311(1-2):122-9. PubMed ID: 16446064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic erosion of bioartificial membranes to control drug delivery.
    Coluccio ML; Ciardelli G; Bertoni F; Silvestri D; Cristallini C; Giusti P; Barbani N
    Macromol Biosci; 2006 Jun; 6(6):403-11. PubMed ID: 16775815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustained release of ganciclovir from poly(lactide-co-glycolide) microspheres.
    Chen X; Ooi CP; Lye WS; Lim TH
    J Microencapsul; 2005 Sep; 22(6):621-31. PubMed ID: 16401578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable scleral implant for intravitreal controlled release of ganciclovir.
    Yasukawa T; Kimura H; Kunou N; Miyamoto H; Honda Y; Ogura Y; Ikada Y
    Graefes Arch Clin Exp Ophthalmol; 2000 Feb; 238(2):186-90. PubMed ID: 10766290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids.
    Dhanaraju MD; Gopinath D; Ahmed MR; Jayakumar R; Vamsadhara C
    J Biomed Mater Res A; 2006 Jan; 76(1):63-72. PubMed ID: 16108044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Materials and biological aspects of synthetic polymers in controlled drug release systems: problems and challenges.
    Bruck SD; Mueller EP
    Crit Rev Ther Drug Carrier Syst; 1988; 5(3):171-87. PubMed ID: 3060266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate.
    Tallury P; Alimohammadi N; Kalachandra S
    Dent Mater; 2007 Apr; 23(4):404-9. PubMed ID: 16556460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting.
    Meng F; Engbers GH; Feijen J
    J Control Release; 2005 Jan; 101(1-3):187-98. PubMed ID: 15588904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering.
    Leong KF; Wiria FE; Chua CK; Li SH
    Biomed Mater Eng; 2007; 17(3):147-57. PubMed ID: 17502691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug delivery from structured porous inorganic materials.
    Arruebo M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(1):16-30. PubMed ID: 21374827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zero-order release of 5-fluorouracil from PCL-based films featuring trilayered structures for stent application.
    Lei L; Liu X; Shen YY; Liu JY; Tang MF; Wang ZM; Guo SR; Cheng L
    Eur J Pharm Biopharm; 2011 May; 78(1):49-57. PubMed ID: 21255648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices.
    Gultepe E; Nagesha D; Sridhar S; Amiji M
    Adv Drug Deliv Rev; 2010 Mar; 62(3):305-15. PubMed ID: 19922749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of intra-vaginal matrices from polycaprolactone for sustained release of antimicrobial agents.
    Dang NT; Turner MS; Coombes AG
    J Biomater Appl; 2013 Jul; 28(1):74-83. PubMed ID: 22684517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists.
    Pitt CG; Marks TA; Schindler A
    NIDA Res Monogr; 1981; 28():232-53. PubMed ID: 6791007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-fabricated perforated polymer devices for long-term drug delivery.
    Wu ZJ; Luo Z; Rastogi A; Stavchansky S; Bowman PD; Ho PS
    Biomed Microdevices; 2011 Jun; 13(3):485-91. PubMed ID: 21347826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pharmacokinetic model of intravitreal delivery of ganciclovir.
    Tojo K; Nakagawa K; Morita Y; Ohtori A
    Eur J Pharm Biopharm; 1999 Mar; 47(2):99-104. PubMed ID: 10234532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and characterization of a scalable microperforated device capable of long-term zero order drug release.
    Rastogi A; Luo Z; Wu Z; Ho PS; Bowman PD; Stavchansky S
    Biomed Microdevices; 2010 Oct; 12(5):915-21. PubMed ID: 20585863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal.
    Salerno A; Saurina J; Domingo C
    Int J Pharm; 2015 Dec; 496(2):654-63. PubMed ID: 26570986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.