These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8860606)

  • 41. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique.
    Leong KF; Phua KK; Chua CK; Du ZH; Teo KO
    Proc Inst Mech Eng H; 2001; 215(2):191-201. PubMed ID: 11382078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents.
    Balmayor ER; Tuzlakoglu K; Marques AP; Azevedo HS; Reis RL
    J Mater Sci Mater Med; 2008 Apr; 19(4):1617-23. PubMed ID: 18214645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo and in vitro sustained release of ranibizumab from a nanoporous thin-film device.
    Lance KD; Bernards DA; Ciaccio NA; Good SD; Mendes TS; Kudisch M; Chan E; Ishikiriyama M; Bhisitkul RB; Desai TA
    Drug Deliv Transl Res; 2016 Dec; 6(6):771-780. PubMed ID: 27178165
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.
    Nieto A; Hou H; Moon SW; Sailor MJ; Freeman WR; Cheng L
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1070-80. PubMed ID: 25613937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial neural networks for bilateral prediction of formulation parameters and drug release profiles from cochlear implant coatings fabricated as porous monolithic devices based on silicone rubber.
    Nemati P; Imani M; Farahmandghavi F; Mirzadeh H; Marzban-Rad E; Nasrabadi AM
    J Pharm Pharmacol; 2014 May; 66(5):624-38. PubMed ID: 24341981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic, implantable, biodegradable polymers for controlled release of radiosensitizers.
    Yuan X; Fahlman C; Tabassi K; Williams JA
    Cancer Biother Radiopharm; 1999 Jun; 14(3):177-86. PubMed ID: 10850302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanostructured thin film polymer devices for constant-rate protein delivery.
    Bernards DA; Lance KD; Ciaccio NA; Desai TA
    Nano Lett; 2012 Oct; 12(10):5355-61. PubMed ID: 22985294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of microfeatures in selective laser sintered drug delivery devices.
    Cheah CM; Leong KF; Chua CK; Low KH; Quek HS
    Proc Inst Mech Eng H; 2002; 216(6):369-83. PubMed ID: 12502001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design.
    Schlesinger E; Ciaccio N; Desai TA
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():232-9. PubMed ID: 26354259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 5-FU loaded pHEMA drainage implants for glaucoma-filtering surgery: device design and in vitro release kinetics.
    Gökce M; Akata RF; Kiremitçi-Gümüşderelioğlu M
    Biomaterials; 1996 May; 17(9):941-9. PubMed ID: 8718940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustained release of antimicrobials in the middle ear using a biodegradable support.
    Goycoolea MV; Muchow DC
    Ann Otol Rhinol Laryngol Suppl; 1994 May; 163():46-8. PubMed ID: 8179270
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Vitro and In Vivo Sustained Zero-Order Delivery of Rapamycin (Sirolimus) From a Biodegradable Intraocular Device.
    Lance KD; Good SD; Mendes TS; Ishikiriyama M; Chew P; Estes LS; Yamada K; Mudumba S; Bhisitkul RB; Desai TA
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7331-7. PubMed ID: 26559479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Curved biodegradable microneedles for vascular drug delivery.
    Choi CK; Kim JB; Jang EH; Youn YN; Ryu WH
    Small; 2012 Aug; 8(16):2483-8. PubMed ID: 22628194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feasibility of localized immunosuppression: 3. Preliminary evaluation of organosilicone constructs designed for sustained drug release in a cell transplant environment using dexamethasone.
    Song Y; Margolles-Clark E; Fraker CA; Weaver JD; Ricordi C; Pileggi A; Stabler CL; Buchwald P
    Pharmazie; 2012 May; 67(5):394-9. PubMed ID: 22764570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlled release of adriamycin HCl from polymeric needle devices.
    Lin SY; Cheng LF; Lui WY; Wu LH; Kao SJ; Han SH
    Biomater Artif Cells Artif Organs; 1988; 16(4):801-14. PubMed ID: 3219418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Biodegradable polyhydroxyalkanoates as carriers for antitumor agents].
    Shishatskaia EI; Zhemchugova AV; Volova TG
    Antibiot Khimioter; 2005; 50(2-3):4-7. PubMed ID: 16308932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two cationic iron-based crystalline porous materials for encapsulation and sustained release of 5-fluorouracil.
    Sun XY; Zhang HJ; Sun Q; Gao EQ
    Dalton Trans; 2022 Sep; 51(35):13263-13271. PubMed ID: 35979932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanofabrication techniques for controlled drug-release devices.
    Chen L; Henein G; Luciani V
    Nanomedicine (Lond); 2011 Jan; 6(1):1-6. PubMed ID: 21182411
    [No Abstract]   [Full Text] [Related]  

  • 60. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.
    Dsa J; Goswami M; Singh BR; Bhatt N; Sharma P; Chauhan MK
    Drug Dev Ind Pharm; 2018 Jul; 44(7):1070-1077. PubMed ID: 29394117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.