BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 8861200)

  • 1. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes.
    Quiocho FA; Ledvina PS
    Mol Microbiol; 1996 Apr; 20(1):17-25. PubMed ID: 8861200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor.
    Quiocho FA; Spurlino JC; Rodseth LE
    Structure; 1997 Aug; 5(8):997-1015. PubMed ID: 9309217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis.
    Sharff AJ; Rodseth LE; Spurlino JC; Quiocho FA
    Biochemistry; 1992 Nov; 31(44):10657-63. PubMed ID: 1420181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins.
    Yao N; Trakhanov S; Quiocho FA
    Biochemistry; 1994 Apr; 33(16):4769-79. PubMed ID: 8161536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: flexibility of tertiary structure and ligand binding.
    Duan X; Hall JA; Nikaido H; Quiocho FA
    J Mol Biol; 2001 Mar; 306(5):1115-26. PubMed ID: 11237621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors.
    Felder CB; Graul RC; Lee AY; Merkle HP; Sadee W
    AAPS PharmSci; 1999; 1(2):E2. PubMed ID: 11741199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution.
    Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL
    J Mol Biol; 1999 Mar; 286(5):1519-31. PubMed ID: 10064713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.
    Lawson DM; Williams CE; Mitchenall LA; Pau RN
    Structure; 1998 Dec; 6(12):1529-39. PubMed ID: 9862806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picture story. One cavity fits all.
    Surridge C
    Nat Struct Biol; 1994 Aug; 1(8):511. PubMed ID: 7664077
    [No Abstract]   [Full Text] [Related]  

  • 10. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria.
    Quiocho FA
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):341-51; discussion 351-2. PubMed ID: 1970641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2 A resolution structure of DppA, a periplasmic dipeptide transport/chemosensory receptor.
    Nickitenko AV; Trakhanov S; Quiocho FA
    Biochemistry; 1995 Dec; 34(51):16585-95. PubMed ID: 8527431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a periplasmic glucose-binding protein from Thermotoga maritima.
    Palani K; Kumaran D; Burley SK; Swaminathan S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Dec; 68(Pt 12):1460-4. PubMed ID: 23192024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis.
    Mowbray SL
    J Mol Biol; 1992 Sep; 227(2):418-40. PubMed ID: 1328650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural basis of sequence-independent peptide binding by OppA protein.
    Tame JR; Murshudov GN; Dodson EJ; Neil TK; Dodson GG; Higgins CF; Wilkinson AJ
    Science; 1994 Jun; 264(5165):1578-81. PubMed ID: 8202710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TonB-dependent receptors-structural perspectives.
    Ferguson AD; Deisenhofer J
    Biochim Biophys Acta; 2002 Oct; 1565(2):318-32. PubMed ID: 12409204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold.
    Cuneo MJ; Beese LS; Hellinga HW
    J Biol Chem; 2009 Nov; 284(48):33217-23. PubMed ID: 19801540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization of the maltodextrin-binding protein for active transport and chemotaxis in several different liganded and mutant forms.
    Rodseth L; Quiocho FA
    J Mol Biol; 1993 Mar; 230(2):675-8. PubMed ID: 8464075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphohistidines in bacterial signaling.
    McEvoy MM; Dahlquist FW
    Curr Opin Struct Biol; 1997 Dec; 7(6):793-7. PubMed ID: 9434897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins.
    Shilton BH; Flocco MM; Nilsson M; Mowbray SL
    J Mol Biol; 1996 Nov; 264(2):350-63. PubMed ID: 8951381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.