These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8861688)

  • 1. Effect of fatigue on maximal velocity and maximal torque during short exhausting cycling.
    Buttelli O; Seck D; Vandewalle H; Jouanin JC; Monod H
    Eur J Appl Physiol Occup Physiol; 1996; 73(1-2):175-9. PubMed ID: 8861688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aerobic exercise on the torque-velocity relationship in cycling.
    Buttelli O; Vandewalle H; Jouanin JC; Seck D; Monod H
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):499-503. PubMed ID: 9202945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximal power and torque-velocity relationship on a cycle ergometer during the acceleration phase of a single all-out exercise.
    Seck D; Vandewalle H; Decrops N; Monod H
    Eur J Appl Physiol Occup Physiol; 1995; 70(2):161-8. PubMed ID: 7768239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of the torque-velocity relationship after short exhausting cycling exercise.
    Buttelli O; Vandewalle H; Jouanin JC
    Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):249-51. PubMed ID: 10453928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.
    Lepers R; Theurel J; Hausswirth C; Bernard T
    J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.
    Koninckx E; Van Leemputte M; Hespel P
    Eur J Appl Physiol; 2010 Jul; 109(4):699-708. PubMed ID: 20213468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between maximal power and maximal torque-velocity using an electronic ergometer.
    Buttelli O; Vandewalle H; Pérès G
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):479-83. PubMed ID: 8803510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of fatigue on EMG/force ratio and cocontraction in cycling.
    Hautier CA; Arsac LM; Deghdegh K; Souquet J; Belli A; Lacour JR
    Med Sci Sports Exerc; 2000 Apr; 32(4):839-43. PubMed ID: 10776904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No acute effects of short-term creatine supplementation on muscle properties and sprint performance.
    Deutekom M; Beltman JG; de Ruiter CJ; de Koning JJ; de Haan A
    Eur J Appl Physiol; 2000 Jun; 82(3):223-9. PubMed ID: 10929216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torque-velocity relationship during cycle ergometer sprints with and without toe clips.
    Capmal S; Vandewalle H
    Eur J Appl Physiol Occup Physiol; 1997; 76(4):375-9. PubMed ID: 9349655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal load for a torque-velocity relationship test during cycling.
    Krüger RL; Peyrard A; di Domenico H; Rupp T; Millet GY; Samozino P
    Eur J Appl Physiol; 2020 Nov; 120(11):2455-2466. PubMed ID: 32816143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.
    Falgairette G; Billaut F; Giacomoni M; Ramdani S; Boyadjian A
    Int J Sports Med; 2004 Apr; 25(3):235-40. PubMed ID: 15088250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Etiology of Neuromuscular Fatigue After Repeated Sprints Depends on Exercise Modality.
    Tomazin K; Morin JB; Millet GY
    Int J Sports Physiol Perform; 2017 Aug; 12(7):878-885. PubMed ID: 27918667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists.
    Dorel S; Hautier CA; Rambaud O; Rouffet D; Van Praagh E; Lacour JR; Bourdin M
    Int J Sports Med; 2005 Nov; 26(9):739-46. PubMed ID: 16237619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular fatigue during a long-duration cycling exercise.
    Lepers R; Maffiuletti NA; Rochette L; Brugniaux J; Millet GY
    J Appl Physiol (1985); 2002 Apr; 92(4):1487-93. PubMed ID: 11896014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of pedalling mechanics during a prolonged cycling exercise performed at different cadences.
    Sarre G; Lepers R; van Hoecke J
    J Sports Sci; 2005 Jul; 23(7):693-701. PubMed ID: 16195019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output.
    Tomaras EK; MacIntosh BR
    J Appl Physiol (1985); 2011 Jul; 111(1):228-35. PubMed ID: 21551012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral neuromuscular fatigue induced by repeated-sprint exercise: cycling vs. running.
    Rampinini E; Connolly DR; Ferioli D; La Torre A; Alberti G; Bosio A
    J Sports Med Phys Fitness; 2016; 56(1-2):49-59. PubMed ID: 25289713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torque-velocity relationship in isokinetic cycling exercise.
    McCartney N; Obminski G; Heigenhauser GJ
    J Appl Physiol (1985); 1985 May; 58(5):1459-62. PubMed ID: 3997712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests.
    Gardner AS; Martin JC; Martin DT; Barras M; Jenkins DG
    Eur J Appl Physiol; 2007 Oct; 101(3):287-92. PubMed ID: 17562069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.