BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 8861938)

  • 1. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
    Fakler B; Schultz JH; Yang J; Schulte U; Brandle U; Zenner HP; Jan LY; Ruppersberg JP
    EMBO J; 1996 Aug; 15(16):4093-9. PubMed ID: 8861938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
    Choe H; Zhou H; Palmer LG; Sackin H
    Am J Physiol; 1997 Oct; 273(4):F516-29. PubMed ID: 9362329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and structural characterization of PKA-mediated pHi gating of ROMK1 channels.
    Lee CH; Huang PT; Lou KL; Liou HH
    J Mol Graph Model; 2008 Oct; 27(3):332-41. PubMed ID: 18620882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants and specificities for ROMK1-phosphoinositide interaction.
    Zeng WZ; Liou HH; Krishna UM; Falck JR; Huang CL
    Am J Physiol Renal Physiol; 2002 May; 282(5):F826-34. PubMed ID: 11934692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels.
    Doi T; Fakler B; Schultz JH; Schulte U; Brändle U; Weidemann S; Zenner HP; Lang F; Ruppersberg JP
    J Biol Chem; 1996 Jul; 271(29):17261-6. PubMed ID: 8663367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing and transport of ROMK1 channel is temperature-sensitive.
    Brejon M; Le Maout S; Welling PA; Merot J
    Biochem Biophys Res Commun; 1999 Aug; 261(2):364-71. PubMed ID: 10425191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
    Wible BA; Taglialatela M; Ficker E; Brown AM
    Nature; 1994 Sep; 371(6494):246-9. PubMed ID: 8078584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms.
    Leung YM; Zeng WZ; Liou HH; Solaro CR; Huang CL
    J Biol Chem; 2000 Apr; 275(14):10182-9. PubMed ID: 10744702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.
    Yano H; Philipson LH; Kugler JL; Tokuyama Y; Davis EM; Le Beau MM; Nelson DJ; Bell GI; Takeda J
    Mol Pharmacol; 1994 May; 45(5):854-60. PubMed ID: 8190102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
    Chu PY; Quigley R; Babich V; Huang CL
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1179-87. PubMed ID: 12952855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles.
    Zeng WZ; Babich V; Ortega B; Quigley R; White SJ; Welling PA; Huang CL
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F630-9. PubMed ID: 12217853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ROMK by extracellular cations.
    Sackin H; Syn S; Palmer LG; Choe H; Walters DE
    Biophys J; 2001 Feb; 80(2):683-97. PubMed ID: 11159436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
    Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
    Leng Q; Kahle KT; Rinehart J; MacGregor GG; Wilson FH; Canessa CM; Lifton RP; Hebert SC
    J Physiol; 2006 Mar; 571(Pt 2):275-86. PubMed ID: 16357011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a pH sensitive K+ channel in the kidney.
    Suzuki M
    Nihon Jinzo Gakkai Shi; 1995 Aug; 37(8):422-7. PubMed ID: 7563949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition.
    Macica CM; Yang Y; Lerea K; Hebert SC; Wang W
    Am J Physiol; 1998 Jan; 274(1):F175-81. PubMed ID: 9458837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini.
    Schulte U; Hahn H; Wiesinger H; Ruppersberg JP; Fakler B
    J Biol Chem; 1998 Dec; 273(51):34575-9. PubMed ID: 9852128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependent modulation of the cloned renal K+ channel, ROMK.
    McNicholas CM; MacGregor GG; Islas LD; Yang Y; Hebert SC; Giebisch G
    Am J Physiol; 1998 Dec; 275(6):F972-81. PubMed ID: 9843915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.