These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 8861961)

  • 21. Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression.
    Ainsworth C; Crossley S; Buchanan-Wollaston V; Thangavelu M; Parker J
    Plant Cell; 1995 Oct; 7(10):1583-98. PubMed ID: 7580253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity.
    Riechmann JL; Meyerowitz EM
    Mol Biol Cell; 1997 Jul; 8(7):1243-59. PubMed ID: 9243505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'.
    Mondragón-Palomino M; Theissen G
    Plant J; 2011 Jun; 66(6):1008-19. PubMed ID: 21435045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.
    Pnueli L; Abu-Abeid M; Zamir D; Nacken W; Schwarz-Sommer Z; Lifschitz E
    Plant J; 1991 Sep; 1(2):255-66. PubMed ID: 1688249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization.
    Winter KU; Weiser C; Kaufmann K; Bohne A; Kirchner C; Kanno A; Saedler H; Theissen G
    Mol Biol Evol; 2002 May; 19(5):587-96. PubMed ID: 11961093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Purugganan MD; Rounsley SD; Schmidt RJ; Yanofsky MF
    Genetics; 1995 May; 140(1):345-56. PubMed ID: 7635298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes.
    Davies B; Di Rosa A; Eneva T; Saedler H; Sommer H
    Plant J; 1996 Oct; 10(4):663-77. PubMed ID: 8893543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis.
    Motte P; Saedler H; Schwarz-Sommer Z
    Development; 1998 Jan; 125(1):71-84. PubMed ID: 9389665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A characterization of the MADS-box gene family in maize.
    Mena M; Mandel MA; Lerner DR; Yanofsky MF; Schmidt RJ
    Plant J; 1995 Dec; 8(6):845-54. PubMed ID: 8580958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain.
    Cho S; Jang S; Chae S; Chung KM; Moon YH; An G; Jang SK
    Plant Mol Biol; 1999 Jun; 40(3):419-29. PubMed ID: 10437826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.
    Hu Y; Liang W; Yin C; Yang X; Ping B; Li A; Jia R; Chen M; Luo Z; Cai Q; Zhao X; Zhang D; Yuan Z
    Mol Plant; 2015 Sep; 8(9):1366-84. PubMed ID: 25917758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms.
    Zahn LM; Leebens-Mack J; DePamphilis CW; Ma H; Theissen G
    J Hered; 2005; 96(3):225-40. PubMed ID: 15695551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development.
    Buchner P; Boutin JP
    Plant Mol Biol; 1998 Dec; 38(6):1253-5. PubMed ID: 9869431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS.
    Linke B; Nothnagel T; Börner T
    Plant J; 2003 Apr; 34(1):27-37. PubMed ID: 12662306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid.
    Tsai WC; Pan ZJ; Hsiao YY; Jeng MF; Wu TF; Chen WH; Chen HH
    Plant Cell Physiol; 2008 May; 49(5):814-24. PubMed ID: 18390881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The MADS box gene FBP2 is required for SEPALLATA function in petunia.
    Ferrario S; Immink RG; Shchennikova A; Busscher-Lange J; Angenent GC
    Plant Cell; 2003 Apr; 15(4):914-25. PubMed ID: 12671087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A short history of MADS-box genes in plants.
    Theissen G; Becker A; Di Rosa A; Kanno A; Kim JT; Münster T; Winter KU; Saedler H
    Plant Mol Biol; 2000 Jan; 42(1):115-49. PubMed ID: 10688133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of tobacco MADS-box genes involved in floral initiation.
    Jang S; An K; Lee S; An G
    Plant Cell Physiol; 2002 Feb; 43(2):230-8. PubMed ID: 11867703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants.
    Münster T; Pahnke J; Di Rosa A; Kim JT; Martin W; Saedler H; Theissen G
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2415-20. PubMed ID: 9122209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.