BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 8863013)

  • 21. Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion.
    Jacobsen R; Lorenzen JK; Toubro S; Krog-Mikkelsen I; Astrup A
    Int J Obes (Lond); 2005 Mar; 29(3):292-301. PubMed ID: 15672116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validity of reported energy expenditure and reported intake of energy, protein, sodium and potassium in rheumatoid arthritis patients in a dietary intervention study.
    Hagfors L; Westerterp K; Sköldstam L; Johansson G
    Eur J Clin Nutr; 2005 Feb; 59(2):238-45. PubMed ID: 15483633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intestinal hydrogen and methane of men fed space diet.
    Calloway DH; Murphy EL
    Life Sci Space Res; 1969; 7():102-9. PubMed ID: 12197533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH.
    Antal TK; Lindblad P
    J Appl Microbiol; 2005; 98(1):114-20. PubMed ID: 15610423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-phytate barley cultivars improve the utilization of phosphorus, calcium, nitrogen, energy, and dry matter in diets fed to young swine.
    Veum TL; Ledoux DR; Raboy V
    J Anim Sci; 2007 Apr; 85(4):961-71. PubMed ID: 17178809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel assessment of nutrition and activity in athletes: validation against doubly labelled water, 24-h urea excretion, and indirect calorimetry.
    Koehler K; Braun H; De Marees M; Fusch G; Fusch C; Mester J; Schaenzer W
    J Sports Sci; 2010 Nov; 28(13):1435-49. PubMed ID: 20967672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Basal and postprandial substrate oxidation rates in obese women receiving two test meals with different protein content.
    Labayen I; Díez N; Parra D; González A; Martínez JA
    Clin Nutr; 2004 Aug; 23(4):571-8. PubMed ID: 15297093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolizable energy intake and sustained energy expenditure of Alaskan sled dogs during heavy exertion in the cold.
    Hinchcliff KW; Reinhart GA; Burr JR; Schreier CJ; Swenson RA
    Am J Vet Res; 1997 Dec; 58(12):1457-62. PubMed ID: 9401699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Doubly labelled water measurement of total energy expenditure.
    Ritz P; Coward WA
    Diabete Metab; 1995 Oct; 21(4):241-51. PubMed ID: 8529758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.
    Spears KE; Kim H; Behall KM; Conway JM
    J Am Diet Assoc; 2009 May; 109(5):836-45. PubMed ID: 19394470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feeding frequency and energy balance in adult males.
    Dallosso HM; Murgatroyd PR; James WP
    Hum Nutr Clin Nutr; 1982; 36C(1):25-39. PubMed ID: 7076516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precision of the doubly labeled water method in a large-scale application: evaluation of a streamlined-dosing protocol in the Observing Protein and Energy Nutrition (OPEN) study.
    Trabulsi J; Troiano RP; Subar AF; Sharbaugh C; Kipnis V; Schatzkin A; Schoeller DA
    Eur J Clin Nutr; 2003 Nov; 57(11):1370-7. PubMed ID: 14576749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of 2H and 18O pool size determinations on the calculation of total energy expenditure.
    Matthews DE; Gilker CD
    Obes Res; 1995 Mar; 3 Suppl 1():21-9. PubMed ID: 7736286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of daily energy needs with the FAO/WHO/UNU 1985 procedures in adults: comparison to whole-body indirect calorimetry measurements.
    Alfonzo-González G; Doucet E; Alméras N; Bouchard C; Tremblay A
    Eur J Clin Nutr; 2004 Aug; 58(8):1125-31. PubMed ID: 15054425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reproducibility of the breath hydrogen measurement after a low and high fibre meal.
    Gelissen IC; Allgood GS; Eastwood MA
    Eur J Clin Nutr; 1994 Apr; 48(4):266-72. PubMed ID: 8039486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy balance and thermogenesis in rats consuming nonstarch polysaccharides of various fermentabilities.
    Smith T; Brown JC; Livesey G
    Am J Clin Nutr; 1998 Oct; 68(4):802-19. PubMed ID: 9771857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.
    Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P
    J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of self-reported energy intake by a self-administered diet history questionnaire using the doubly labeled water method in 140 Japanese adults.
    Okubo H; Sasaki S; Rafamantanantsoa HH; Ishikawa-Takata K; Okazaki H; Tabata I
    Eur J Clin Nutr; 2008 Nov; 62(11):1343-50. PubMed ID: 17671444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen and methane breath tests for evaluation of resistant carbohydrates.
    Rumessen JJ
    Eur J Clin Nutr; 1992 Oct; 46 Suppl 2():S77-90. PubMed ID: 1330532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals.
    Arch JR; Hislop D; Wang SJ; Speakman JR
    Int J Obes (Lond); 2006 Sep; 30(9):1322-31. PubMed ID: 16801931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.