These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8863279)

  • 1. Inhibitory effect of sugars and polyols on the metal-catalyzed oxidation of human relaxin.
    Li S; Patapoff TW; Nguyen TH; Borchardt RT
    J Pharm Sci; 1996 Aug; 85(8):868-72. PubMed ID: 8863279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation.
    Li S; Nguyen TH; Schöneich C; Borchardt RT
    Biochemistry; 1995 May; 34(17):5762-72. PubMed ID: 7727437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the involvement of histidine A(12) in the aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation.
    Khossravi M; Shire SJ; Borchardt RT
    Biochemistry; 2000 May; 39(19):5876-85. PubMed ID: 10801339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical pathways of peptide degradation. X: effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin.
    Khossravi M; Borchardt RT
    Pharm Res; 2000 Jul; 17(7):851-8. PubMed ID: 10990205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state.
    Li S; Patapoff TW; Overcashier D; Hsu C; Nguyen TH; Borchardt RT
    J Pharm Sci; 1996 Aug; 85(8):873-7. PubMed ID: 8863280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical pathways of peptide degradation: IX. Metal-catalyzed oxidation of histidine in model peptides.
    Khossravi M; Borchardt RT
    Pharm Res; 1998 Jul; 15(7):1096-102. PubMed ID: 9688066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative damage to lens membranes induced by metal-catalyzed systems.
    Yugay MT; Pereira PC; Leiria F; Mota MC
    Ophthalmic Res; 1996; 28 Suppl 1():92-6. PubMed ID: 8727975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoxidation of ascorbic acid catalyzed by the copper(II) bound to L-histidine oligopeptides, (His)iGly and acetyl-(His)i Gly (i=9, 19, 29). Relationship between catalytic activity and coordination mode.
    Ueda JI; Hanaki A; Hatano K; Nakajima T
    Chem Pharm Bull (Tokyo); 2000 Jul; 48(7):908-13. PubMed ID: 10923816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu(II)Gly2HisGly oxidation by H2O2/ascorbic acid to the CuIII complex and its subsequent decay to alkene peptides.
    Burke SK; Xu Y; Margerum DW
    Inorg Chem; 2003 Sep; 42(19):5807-17. PubMed ID: 12971748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination abilities of neurokinin A and its derivative and products of metal-catalyzed oxidation.
    Kowalik-Jankowska T; Jankowska E; Szewczuk Z; Kasprzykowski F
    J Inorg Biochem; 2010 Aug; 104(8):831-42. PubMed ID: 20435351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambivalent role of ascorbic acid in the metal-catalyzed oxidation of oligopeptides.
    Bodnár N; Várnagy K; Nagy L; Csire G; Kállay C
    J Inorg Biochem; 2021 Sep; 222():111510. PubMed ID: 34126320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Maillard reaction products on the oxidative cleavage and polymerization of protein under ascorbic acid-transition metal system.
    Umetsu H; Ikeda N; Nguyen VC
    Biosci Biotechnol Biochem; 1999 Jul; 63(7):1181-6. PubMed ID: 10478445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiamine oxidative transformations catalyzed by copper ions and ascorbic acid.
    Stepuro II; Piletskaya TP; Stepuro VI; Maskevich SA
    Biochemistry (Mosc); 1997 Dec; 62(12):1409-14. PubMed ID: 9481873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of oxidative DNA degradation by copper-binding peptides.
    Yokawa K; Kagenishi T; Kawano T
    Biosci Biotechnol Biochem; 2011; 75(7):1377-9. PubMed ID: 21737913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation.
    Jankowska E; Pietruszka M; Kowalik-Jankowska T
    Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damage and 2'-deoxyguanosine oxidation induced by S(IV) autoxidation catalyzed by copper(II) tetraglycine complexes: synergistic effect of a second metal ion.
    Moreno RG; Alipázaga MV; Gomes OF; Linares E; Medeiros MH; Coichev N
    J Inorg Biochem; 2007 May; 101(5):866-75. PubMed ID: 17383005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggering mechanisms for oxygen-scavenging function of ascorbic acid-incorporated whey protein isolate films.
    Janjarasskul T; Min SC; Krochta JM
    J Sci Food Agric; 2013 Sep; 93(12):2939-44. PubMed ID: 23450783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-catalyzed autoxidations of GSH and L-ascorbic acid: mutual inhibition of the respective oxidations by their coexistence.
    Ohta Y; Shiraishi N; Nishikawa T; Nishikimi M
    Biochim Biophys Acta; 2000 May; 1474(3):378-82. PubMed ID: 10779690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.
    Beker BY; Bakır T; Sönmezoğlu I; Imer F; Apak R
    Chem Phys Lipids; 2011 Nov; 164(8):732-9. PubMed ID: 21925488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexation abilities of neuropeptide gamma toward copper(II) ions and products of metal-catalyzed oxidation.
    Pietruszka M; Jankowska E; Kowalik-Jankowska T; Szewczuk Z; Smużyńska M
    Inorg Chem; 2011 Aug; 50(16):7489-99. PubMed ID: 21770367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.