These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 8863502)
21. The effects of sub-chronic clozapine and haloperidol administration on isolation rearing induced changes in frontal cortical N-methyl-D-aspartate and D1 receptor binding in rats. Toua C; Brand L; Möller M; Emsley RA; Harvey BH Neuroscience; 2010 Jan; 165(2):492-9. PubMed ID: 19854242 [TBL] [Abstract][Full Text] [Related]
22. The effects of clozapine and haloperidol on serotonin-1A, -2A and -2C receptor gene expression and serotonin metabolism in the rat forebrain. Burnet PW; Chen CP; McGowan S; Franklin M; Harrison PJ Neuroscience; 1996 Jul; 73(2):531-40. PubMed ID: 8783268 [TBL] [Abstract][Full Text] [Related]
23. Quantitative light microscopic demonstration of increased pallidal and striatal met5-enkephalin-like immunoreactivity in rats following chronic treatment with haloperidol but not with clozapine: implications for the pathogenesis of neuroleptic-induced movement disorders. Auchus AP; Pickel VM Exp Neurol; 1992 Jul; 117(1):17-27. PubMed ID: 1618284 [TBL] [Abstract][Full Text] [Related]
24. Effects of haloperidol and clozapine on glutamate release from nerve terminals isolated from rat prefrontal cortex. Yang TT; Wang SJ Synapse; 2005 Apr; 56(1):12-20. PubMed ID: 15700289 [TBL] [Abstract][Full Text] [Related]
26. Chronic treatments with haloperidol and clozapine alter the level of NMDA-R1 mRNA in the rat brain: an in situ hybridization study. Ossowska K; Pietraszek M; Wardas J; Dziedzicka-Wasylewska M; Nowicka D; Wolfarth S Pol J Pharmacol; 2002; 54(1):1-9. PubMed ID: 12020038 [TBL] [Abstract][Full Text] [Related]
27. Clozapine and haloperidol differentially affect AMPA and kainate receptor subunit mRNA levels in rat cortex and striatum. Healy DJ; Meador-Woodruff JH Brain Res Mol Brain Res; 1997 Jul; 47(1-2):331-8. PubMed ID: 9221932 [TBL] [Abstract][Full Text] [Related]
28. Neurochemical changes in the entopeduncular nucleus and increased oral behavior in rats treated subchronically with clozapine or haloperidol. Yu J; Källström L; Wiesel FA; Johnson AE Synapse; 1999 Dec; 34(3):192-207. PubMed ID: 10523757 [TBL] [Abstract][Full Text] [Related]
29. Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor nerve growth factor-inducible B by haloperidol and clozapine in the rat forebrain. Beaudry G; Langlois MC; Weppe I; Rouillard C; Lévesque D J Neurochem; 2000 Oct; 75(4):1694-702. PubMed ID: 10987852 [TBL] [Abstract][Full Text] [Related]
30. Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine. Arvanov VL; Wang RY J Pharmacol Exp Ther; 1999 May; 289(2):1000-6. PubMed ID: 10215680 [TBL] [Abstract][Full Text] [Related]
31. Enhancement of N-methyl-D-aspartate (NMDA) immunoreactivity in residual dendritic spines in the caudate-putamen nucleus after chronic haloperidol administration. Rodríguez JJ; Pickel VM Synapse; 1999 Sep; 33(4):289-303. PubMed ID: 10421710 [TBL] [Abstract][Full Text] [Related]
32. Repeated treatment with haloperidol, but not olanzapine, alters synaptic NMDA receptor composition in rat striatum. Gardoni F; Frasca A; Zianni E; Riva MA; Di Luca M; Fumagalli F Eur Neuropsychopharmacol; 2008 Jul; 18(7):531-4. PubMed ID: 18061412 [TBL] [Abstract][Full Text] [Related]
33. Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Zink M; Schmitt A; May B; Müller B; Demirakca T; Braus DF; Henn FA Schizophr Res; 2004 Feb; 66(2-3):151-7. PubMed ID: 15061247 [TBL] [Abstract][Full Text] [Related]
34. Regulation of ionotropic glutamate receptors following subchronic and chronic treatment with typical and atypical antipsychotics. Tarazi FI; Florijn WJ; Creese I Psychopharmacology (Berl); 1996 Dec; 128(4):371-9. PubMed ID: 8986008 [TBL] [Abstract][Full Text] [Related]
35. Expression of N-methyl-D-aspartate glutamate receptor subunits in the prefrontal cortex of the rat. Rudolf GD; Cronin CA; Landwehrmeyer GB; Standaert DG; Penney JB; Young AB Neuroscience; 1996 Jul; 73(2):417-27. PubMed ID: 8783259 [TBL] [Abstract][Full Text] [Related]
36. Differential patterns of induction of NGFI-B, Nor1 and c-fos mRNAs in striatal subregions by haloperidol and clozapine. Werme M; Ringholm A; Olson L; Brené S Brain Res; 2000 Apr; 863(1-2):112-9. PubMed ID: 10773199 [TBL] [Abstract][Full Text] [Related]
38. N-methyl-D-aspartate-type glutamate receptors are found in post-synaptic targets of adrenergic terminals in the thoracic spinal cord. Aicher SA; Hahn B; Milner TA Brain Res; 2000 Feb; 856(1-2):1-11. PubMed ID: 10677605 [TBL] [Abstract][Full Text] [Related]
39. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. Landwehrmeyer GB; Standaert DG; Testa CM; Penney JB; Young AB J Neurosci; 1995 Jul; 15(7 Pt 2):5297-307. PubMed ID: 7623152 [TBL] [Abstract][Full Text] [Related]
40. Presence of NMDA-type glutamate receptors in cingulate corticostriatal terminals and their postsynaptic targets. Wang H; Pickel VM Synapse; 2000 Mar; 35(4):300-10. PubMed ID: 10657040 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]