These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 8863902)
1. Intrarenal distribution of renal blood flow after acute and chronic administration of nitric oxide-synthase inhibitor. Bartha J; Vág J; Hably C Acta Physiol Hung; 1995; 83(4):403-10. PubMed ID: 8863902 [TBL] [Abstract][Full Text] [Related]
2. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. Myers SI; Wang L; Liu F; Bartula LL J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177 [TBL] [Abstract][Full Text] [Related]
3. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. Myers SI; Wang L; Liu F; Bartula LL J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873 [TBL] [Abstract][Full Text] [Related]
4. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis. Myers SI; Wang L; Liu F; Bartula LL J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601 [TBL] [Abstract][Full Text] [Related]
5. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat. Clayton JS; Clark KL; Johns EJ; Drew GM Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960 [TBL] [Abstract][Full Text] [Related]
6. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases. Walkowska A; Badzyńska B; Kompanowska-Jezierska E; Johns EJ; Sadowski J Acta Physiol Scand; 2005 Jan; 183(1):99-105. PubMed ID: 15654923 [TBL] [Abstract][Full Text] [Related]
7. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits. Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437 [TBL] [Abstract][Full Text] [Related]
8. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2. Henrion D; Dechaux E; Dowell FJ; Maclour J; Samuel JL; Lévy BI; Michel JB Br J Pharmacol; 1997 May; 121(1):83-90. PubMed ID: 9146891 [TBL] [Abstract][Full Text] [Related]
9. Decrease in cochlear blood flow with infusion of nitric oxide synthase inhibitor and its recovery with L-arginine infusion: comparison with abdominal blood flow and auricular blood flow. Hoshijima H; Makimoto K Acta Otolaryngol; 2002 Dec; 122(8):808-15. PubMed ID: 12542197 [TBL] [Abstract][Full Text] [Related]
10. Renal 20-HETE inhibition attenuates changes in renal hemodynamics induced by L-NAME treatment in pregnant rats. Huang H; Zhou Y; Raju VT; Du J; Chang HH; Wang CY; Brands MW; Falck JR; Wang MH Am J Physiol Renal Physiol; 2005 Nov; 289(5):F1116-22. PubMed ID: 15998843 [TBL] [Abstract][Full Text] [Related]
11. EDHF-mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats. Desai KM; Gopalakrishnan V; Hiebert LM; McNeill JR; Wilson TW Eur J Pharmacol; 2006 Sep; 546(1-3):120-6. PubMed ID: 16876156 [TBL] [Abstract][Full Text] [Related]
12. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats. Grzelec-Mojzesowicz M; Sadowski J J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233 [TBL] [Abstract][Full Text] [Related]
13. [The role of EDRF-NO in the regulation of bone blood flow in rats: inhibition with L-NAME]. Kapitola J; Andrle J; Haas T; Kubícková J Sb Lek; 1996; 97(4):455-61. PubMed ID: 9424710 [TBL] [Abstract][Full Text] [Related]
14. Renal endothelial function and blood flow predict the individual susceptibility to adriamycin-induced renal damage. Ochodnicky P; Henning RH; Buikema H; Kluppel AC; van Wattum M; de Zeeuw D; van Dokkum RP Nephrol Dial Transplant; 2009 Feb; 24(2):413-20. PubMed ID: 18728153 [TBL] [Abstract][Full Text] [Related]
15. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition. Millar CG; Thiemermann C Br J Pharmacol; 1997 Aug; 121(8):1824-30. PubMed ID: 9283724 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats. Walkowska A; Kompanowska-Jezierska E; Sadowski J Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725 [TBL] [Abstract][Full Text] [Related]
17. The intrarenal blood flow distribution and role of nitric oxide in diabetic rats. Nakanishi K; Onuma S; Higa M; Nagai Y; Inokuchi T Metabolism; 2005 Jun; 54(6):788-92. PubMed ID: 15931616 [TBL] [Abstract][Full Text] [Related]
18. Blood flow of the right and left submandibular gland during unilateral carotid artery occlusion in rat: role of nitric oxide. Vág J; Hably C; Fazekas A; Bartha J Acta Physiol Hung; 1999; 86(2):139-45. PubMed ID: 10741872 [TBL] [Abstract][Full Text] [Related]
19. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2. Qu C; Leung SW; Vanhoutte PM; Man RY J Pharmacol Exp Ther; 2010 Aug; 334(2):373-80. PubMed ID: 20444882 [TBL] [Abstract][Full Text] [Related]
20. [Renal effects of the chronic inhibition of nitric oxide synthesis in cirrhotic rats with ascites]. Ortiz MC; Fortepiani LA; Martínez-Salgado C; Eleno N; Atucha NM; López-Novoa JM; García-Estañ J Nefrologia; 2001; 21(6):556-64. PubMed ID: 11881425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]