These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8864264)

  • 1. Neural systems for the expression of hypoalgesia during nonassociative fear.
    Bellgowan PS; Helmstetter FJ
    Behav Neurosci; 1996 Aug; 110(4):727-36. PubMed ID: 8864264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses.
    Helmstetter FJ; Tershner SA
    J Neurosci; 1994 Nov; 14(11 Pt 2):7099-108. PubMed ID: 7965101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoalgesia in response to sensitization during acute noise stress.
    Helmstetter FJ; Bellgowan PS
    Behav Neurosci; 1994 Feb; 108(1):177-85. PubMed ID: 8192843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia.
    Bellgowan PS; Helmstetter FJ
    Brain Res; 1998 Apr; 791(1-2):83-9. PubMed ID: 9593835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesions of the amygdala block conditional hypoalgesia on the tail flick test.
    Helmstetter FJ; Bellgowan PS
    Brain Res; 1993 May; 612(1-2):253-7. PubMed ID: 8330203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity.
    McGaraughty S; Heinricher MM
    Pain; 2002 Mar; 96(1-2):153-62. PubMed ID: 11932071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray.
    Tershner SA; Helmstetter FJ
    Brain Res; 2000 May; 865(1):17-26. PubMed ID: 10814729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tail-flick test: II. The role of supraspinal systems and avoidance learning.
    King TE; Joynes RL; Grau JW
    Behav Neurosci; 1997 Aug; 111(4):754-67. PubMed ID: 9267652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of the medial and cortical amygdala lesions on post-stress analgesia in rats.
    Werka T
    Behav Brain Res; 1997 Jun; 86(1):59-65. PubMed ID: 9105582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological evidence for a periaqueductal gray-nucleus raphe magnus connection mediating the antinociception induced by microinjecting carbachol into the dorsal periaqueductal gray of rats.
    Guimarães AP; Prado WA
    Brain Res; 1999 May; 827(1-2):152-9. PubMed ID: 10320704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antinociceptive effects of stimulating the pretectal nucleus of the rat.
    Roberts MHT; Rees H
    Pain; 1986 Apr; 25(1):83-93. PubMed ID: 3714289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associative factors in tolerance to analgesia produced by electrical stimulation in the brainstem.
    Paul D; Phillips AG
    Behav Neurosci; 1990 Feb; 104(1):207-16. PubMed ID: 2156521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear.
    Kim JJ; Rison RA; Fanselow MS
    Behav Neurosci; 1993 Dec; 107(6):1093-8. PubMed ID: 8136063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats.
    Pavlovic ZW; Cooper ML; Bodnar RJ
    Brain Res; 1996 Nov; 741(1-2):13-26. PubMed ID: 9001699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats.
    Harris JA; Westbrook RF
    Behav Neurosci; 1995 Apr; 109(2):295-304. PubMed ID: 7619319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of PAG in the antinociception evoked from the medial or central amygdala in rats.
    Oliveira MA; Prado WA
    Brain Res Bull; 2001 Jan; 54(1):55-63. PubMed ID: 11226714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat.
    Di Scala G; Mana MJ; Jacobs WJ; Phillips AG
    Physiol Behav; 1987; 40(1):55-63. PubMed ID: 3615655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock-induced hyperalgesia: evidence forebrain systems play an essential role.
    King TE; Crown ED; Sieve AN; Joynes RL; Grau JW; Meagher MW
    Behav Brain Res; 1999 Apr; 100(1-2):33-42. PubMed ID: 10212051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Hydroxytryptamine
    de Oliveira R; de Oliveira RC; Falconi-Sobrinho LL; da Silva Soares R; Coimbra NC
    Behav Brain Res; 2017 Jan; 316():294-304. PubMed ID: 27616344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.