BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8864274)

  • 1. Lack of a temporal gradient of retrograde amnesia following NMDA-induced lesions of the basolateral amygdala assessed with the fear-potentiated startle paradigm.
    Lee Y; Walker D; Davis M
    Behav Neurosci; 1996 Aug; 110(4):836-9. PubMed ID: 8864274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of a temporal gradient of retrograde amnesia in rats with amygdala lesions assessed with the fear-potentiated startle paradigm.
    Kim M; Davis M
    Behav Neurosci; 1993 Dec; 107(6):1088-92. PubMed ID: 8136062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolytic lesions of the amygdala block acquisition and expression of fear-potentiated startle even with extensive training but do not prevent reacquisition.
    Kim M; Davis M
    Behav Neurosci; 1993 Aug; 107(4):580-95. PubMed ID: 8397863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesions of the central nucleus of the amygdala block conditioned excitation, but not conditioned inhibition of fear as measured with the fear-potentiated startle effect.
    Falls WA; Davis M
    Behav Neurosci; 1995 Jun; 109(3):379-87. PubMed ID: 7662148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli.
    Campeau S; Davis M
    J Neurosci; 1995 Mar; 15(3 Pt 2):2301-11. PubMed ID: 7891168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of NMDA receptors within the amygdala in short- versus long-term memory for fear conditioning as assessed with fear-potentiated startle.
    Walker DL; Davis M
    Behav Neurosci; 2000 Dec; 114(6):1019-33. PubMed ID: 11142635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of contextual fear after lesions of the hippocampus: a disruption of freezing but not fear-potentiated startle.
    McNish KA; Gewirtz JC; Davis M
    J Neurosci; 1997 Dec; 17(23):9353-60. PubMed ID: 9364080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli.
    Campeau S; Davis M
    J Neurosci; 1995 Mar; 15(3 Pt 2):2312-27. PubMed ID: 7891169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear.
    Walker DL; Davis M
    J Neurosci; 1997 Dec; 17(23):9375-83. PubMed ID: 9364083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttraining lesions of the amygdala interfere with fear-potentiated startle to both visual and auditory conditioned stimuli in C57BL/6J mice.
    Heldt S; Sundin V; Willott JF; Falls WA
    Behav Neurosci; 2000 Aug; 114(4):749-59. PubMed ID: 10959534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm.
    Hitchcock JM; Davis M
    Behav Neurosci; 1991 Dec; 105(6):826-42. PubMed ID: 1663757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm.
    Hitchcock J; Davis M
    Behav Neurosci; 1986 Feb; 100(1):11-22. PubMed ID: 3954873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate receptor antagonist infusions into the basolateral and medial amygdala reveal differential contributions to olfactory vs. context fear conditioning and expression.
    Walker DL; Paschall GY; Davis M
    Learn Mem; 2005; 12(2):120-9. PubMed ID: 15774945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient.
    Maren S; Aharonov G; Fanselow MS
    Behav Neurosci; 1996 Aug; 110(4):718-26. PubMed ID: 8864263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperexcitability: exaggerated fear-potentiated startle produced by partial amygdala kindling.
    Rosen JB; Hamerman E; Sitcoske M; Glowa JR; Schulkin J
    Behav Neurosci; 1996 Feb; 110(1):43-50. PubMed ID: 8652071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amygdala lesions do not impair shock-probe avoidance retention performance.
    Lehmann H; Treit D; Parent MB
    Behav Neurosci; 2000 Feb; 114(1):107-16. PubMed ID: 10718266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of contextual freezing, but not contextual blocking of fear-potentiated startle, after lesions of the dorsal hippocampus.
    McNish KA; Gewirtz JC; Davis M
    Behav Neurosci; 2000 Feb; 114(1):64-76. PubMed ID: 10718262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats.
    Gewirtz JC; Falls WA; Davis M
    Behav Neurosci; 1997 Aug; 111(4):712-26. PubMed ID: 9267649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological analysis of fear-potentiated startle.
    Davis M
    Braz J Med Biol Res; 1993 Mar; 26(3):235-60. PubMed ID: 8257926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the dorsal periaqueductal gray in the loss of fear-potentiated startle accompanying high footshock training.
    Walker DL; Davis M
    Behav Neurosci; 1997 Aug; 111(4):692-702. PubMed ID: 9267647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.