These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 886454)

  • 1. Effects of agitation on size distribution of particulate matter in large-volume parenterals.
    Blanchard J; Schwartz JA; Byrne DM
    J Pharm Sci; 1977 Jul; 66(7):935-8. PubMed ID: 886454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of two methods for obtaining size distribution characteristics of particulate matter in large-volume parenterals.
    Blanchard J; Schwartz JA; Byrne DM; Marx DB
    J Pharm Sci; 1978 Mar; 67(3):340-4. PubMed ID: 641718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of official instrumental methods for the determination of particulate matter contamination in large volume parenteral solutions.
    Montanari L; Pavanetto F; Conti B; Ponci R; Grassi M
    J Pharm Pharmacol; 1986 Nov; 38(11):785-90. PubMed ID: 2879006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical feasibility of sub-visible particle analysis in parenterals with reduced volume light obscuration methods.
    Hawe A; Schaubhut F; Geidobler R; Wiggenhorn M; Friess W; Rast M; de Muynck C; Winter G
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1084-7. PubMed ID: 23454051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter for assessing parenteral cleanliness based on particle-size distributions.
    Blanchard J; Schwartz JA; Byrne DM
    J Pharm Sci; 1977 Aug; 66(8):1083-6. PubMed ID: 894493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particulate matter in small volume parenterals: evaluation of some technological and analytical aspects.
    Cirannni Signoretti E; Montanari I; Neri G; De Sena C; Alimonti S
    Boll Chim Farm; 1989 Feb; 128(2):65-70. PubMed ID: 2775519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to reducing subvisible particle counts in lyophilized parenteral formulations.
    Gupta PK; Porembski E; Williams NA
    J Pharm Sci Technol; 1994; 48(1):30-7. PubMed ID: 8004415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particulate contamination in parenterals: current issues.
    Groves MJ
    Boll Chim Farm; 1991 Oct; 130(9):347-54. PubMed ID: 1799429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particles in small volume injections.
    Taylor SA; Spence J
    J Pharm Pharmacol; 1983 Dec; 35(12):769-73. PubMed ID: 6141237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Particulate Matter in Liquid-Finished Dosage Forms.
    Duchek J; Havasi B
    PDA J Pharm Sci Technol; 2018; 72(6):608-625. PubMed ID: 29853612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of particle sizes with metal replication under standard freeze-etching conditions: a gold ball standard for calibrating shadow widths was used to measure freeze-etched globular proteins.
    Ruben GC
    Microsc Res Tech; 1995 Nov; 32(4):312-29. PubMed ID: 8573781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-fractioned particulate air pollution and cardiovascular emergency room visits in Beijing, China.
    Liu L; Breitner S; Schneider A; Cyrys J; Brüske I; Franck U; Schlink U; Marian Leitte A; Herbarth O; Wiedensohler A; Wehner B; Pan X; Wichmann HE; Peters A
    Environ Res; 2013 Feb; 121():52-63. PubMed ID: 23375554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particulate and microbial contamination in in-use admixed parenteral nutrition solutions.
    Oie S; Kamiya A
    Biol Pharm Bull; 2005 Dec; 28(12):2268-70. PubMed ID: 16327163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of acceptance criteria for particulate limits for small-volume parenteral products.
    Tsuji K; Lewis AR
    J Pharm Sci; 1978 Jan; 67(1):50-5. PubMed ID: 619115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach to setting particulate matter standards for small volume parenterals.
    DeLuca PP; Boddapati S; Haack D; Schroeder H
    J Parenter Sci Technol; 1986; 40(1):2-13. PubMed ID: 3701538
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanistic insights derived from retardation and peak broadening of particles up to 200 nm in diameter in electrophoresis in semidilute polyacrylamide solutions.
    Radko SP; Chrambach A
    Electrophoresis; 1998 Oct; 19(14):2423-31. PubMed ID: 9820962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced particulate matter in a parenteral formulation for bisnafide, an experimental antitumor agent.
    Rubino JT; Chan LL; Walker JT; Segretario J; Everlof JG; Hussain MA
    Pharm Dev Technol; 1999 Aug; 4(3):439-47. PubMed ID: 10434290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particulate matter determination in LVPs produced in Dutch hospital pharmacies. Part 2: Overview of the results.
    Boom FA; Van der Veen J; Verbrugge P; Van de Vaart FJ; Paalman AC; Vos T
    PDA J Pharm Sci Technol; 2000; 54(4):343-58. PubMed ID: 10969531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano/micron particles released from newspapers under different reading conditions.
    Sopajaree K; Tsai YI; Yen YH
    Sci Total Environ; 2019 Jan; 646():1182-1194. PubMed ID: 30235604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.