These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Takeda N; Dixon IM; Hata T; Elimban V; Shah KR; Dhalla NS Diabetes Res Clin Pract; 1996 Feb; 30 Suppl():113-22. PubMed ID: 8964185 [TBL] [Abstract][Full Text] [Related]
4. Non-insulin-dependent diabetes-induced defects in cardiac cellular calcium regulation. Allo SN; Lincoln TM; Wilson GL; Green FJ; Watanabe AM; Schaffer SW Am J Physiol; 1991 Jun; 260(6 Pt 1):C1165-71. PubMed ID: 1829324 [TBL] [Abstract][Full Text] [Related]
5. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Tappia PS; Hata T; Hozaima L; Sandhu MS; Panagia V; Dhalla NS Arch Biochem Biophys; 2001 Mar; 387(1):85-92. PubMed ID: 11368187 [TBL] [Abstract][Full Text] [Related]
6. Reciprocal changes in the postnatal expression of the sarcolemmal Na+-Ca(2+)-exchanger and SERCA2 in rat heart. Vetter R; Studer R; Reinecke H; Kolár F; Ostádalová I; Drexler H J Mol Cell Cardiol; 1995 Aug; 27(8):1689-701. PubMed ID: 8523431 [TBL] [Abstract][Full Text] [Related]
7. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload. Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404 [TBL] [Abstract][Full Text] [Related]
8. Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency. Kato M; Kako KJ Mol Cell Biochem; 1988 Sep; 83(1):15-25. PubMed ID: 2851714 [TBL] [Abstract][Full Text] [Related]
9. Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages. Narayanan N Mech Ageing Dev; 1987 Apr; 38(2):127-43. PubMed ID: 2955175 [TBL] [Abstract][Full Text] [Related]
16. Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene. Tschöpe C; Spillmann F; Rehfeld U; Koch M; Westermann D; Altmann C; Dendorfer A; Walther T; Bader M; Paul M; Schultheiss HP; Vetter R FASEB J; 2004 Dec; 18(15):1967-9. PubMed ID: 15448111 [TBL] [Abstract][Full Text] [Related]
17. Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Kim HW; Ch YS; Lee HR; Park SY; Kim YH Life Sci; 2001 Dec; 70(4):367-79. PubMed ID: 11798007 [TBL] [Abstract][Full Text] [Related]
18. Ca2+-antagonists inhibit the N-methyltransferase-dependent synthesis of phosphatidylcholine in the heart. Tappia PS; Okumura K; Kawabata K; Shah KR; Nijjar MS; Panagia V; Dhalla NS Mol Cell Biochem; 2001 May; 221(1-2):89-98. PubMed ID: 11506191 [TBL] [Abstract][Full Text] [Related]
19. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems. Bassani RA; Bassani JW; Bers DM J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644 [TBL] [Abstract][Full Text] [Related]
20. Remodelling of the sarcolemma in diabetic rat hearts: the role of membrane fluidity. Ziegelhöffer-Mihalovicová B; Waczulíková I; Sikurová L; Styk J; Cársky J; Ziegelhöffer A Mol Cell Biochem; 2003 Jul; 249(1-2):175-82. PubMed ID: 12956413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]