These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8864695)

  • 1. Modulation of vascular KATP channels in hypothyroidism.
    Jagadish M; Raviprakash V; Telang AG; Mishra SK
    Eur J Pharmacol; 1996 Aug; 309(1):63-9. PubMed ID: 8864695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilating effect of perivascularly applied potassium channel openers cromakalim and pinacidil in rat and cat pial arteries in situ.
    Wahl M; Parsons AA; Schilling L
    Cardiovasc Res; 1994 Dec; 28(12):1803-7. PubMed ID: 7867033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the in vitro effects of K+ channel modulators on detrusor and portal vein strips from guinea pigs.
    Zografos P; Li JH; Kau ST
    Pharmacology; 1992; 45(4):216-30. PubMed ID: 1438528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein.
    Kamouchi M; Kitamura K
    Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of effects of cromakalim and pinacidil on mechanical activity and 86Rb efflux in dog coronary arteries.
    Masuzawa K; Asano M; Matsuda T; Imaizumi Y; Watanabe M
    J Pharmacol Exp Ther; 1990 May; 253(2):586-93. PubMed ID: 2160002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation by cromakalim and pinacidil of isolated smooth muscle cells from canine coronary artery-multiple sites of action.
    Rhim BY; Hong KW
    Arch Int Pharmacodyn Ther; 1994; 328(1):67-81. PubMed ID: 7893192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro.
    Edwards G; Henshaw M; Miller M; Weston AH
    Br J Pharmacol; 1991 Mar; 102(3):679-86. PubMed ID: 1364839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cromakalim, pinacidil and glibenclamide on cholinergic transmission in rat isolated atria.
    Fabiani ME; Story DF
    Pharmacol Res; 1995 Sep; 32(3):155-63. PubMed ID: 8745346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KATP channel modulators increase survival rate during coronary occlusion-reperfusion in anaesthetized rats.
    Baczkó I; Leprán I; Papp JG
    Eur J Pharmacol; 1997 Apr; 324(1):77-83. PubMed ID: 9137916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cromakalim and pinacidil on 86Rb efflux from guinea pig urinary bladder smooth muscle.
    Trivedi S; Stetz S; Levin R; Li J; Kau S
    Pharmacology; 1994 Sep; 49(3):159-66. PubMed ID: 7972330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal nitric oxide release differentially modulates vasodilations by pinacidil and levcromakalim in goat coronary artery.
    Deka DK; Raviprakash V; Mishra SK
    Eur J Pharmacol; 1998 May; 348(1):11-23. PubMed ID: 9650826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of intracellular calcium by potassium channel openers in vascular muscle.
    Erne P; Hermsmeyer K
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Dec; 344(6):706-15. PubMed ID: 1775202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of the potassium channel openers cromakalim and pinacidil and the cromakalim analog U-89232 on isolated vascular and cardiac tissue.
    Norman NR; Toombs CF; Khan SA; Buchanan LV; Cimini MG; Gibson JK; Meisheri KD; Shebuski RJ
    Pharmacology; 1994 Aug; 49(2):86-95. PubMed ID: 7972325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of KRN2391, a novel vasodilator, compared with those of cromakalim, pinacidil and nifedipine in rat aorta.
    Kashiwabara T; Nakajima S; Izawa T; Fukushima H; Nishikori K
    Eur J Pharmacol; 1991 Apr; 196(1):1-7. PubMed ID: 1678711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of KATP channel openers on myogenic and neurogenic responses in goat urinary bladder.
    Vijayakumar C; Kathirvel K; Sardar KK; Parija SC
    Indian J Exp Biol; 2007 Feb; 45(2):185-93. PubMed ID: 17375559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channel-opening and vasorelaxant profiles of a novel compound YM099 in rat isolated portal vein and rabbit isolated aorta.
    Uchida W; Hirano Y; Shirai Y; Taguchi T; Masuda N; Shibasaki K; Hirano S; Matsumoto Y; Tsuzuki R; Yanagisawa I
    Arch Int Pharmacodyn Ther; 1994; 327(3):330-43. PubMed ID: 7848015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative effects of the K+ channel openers, pinacidil and cromakalim on vascular tone: sensitivity to glyburide and calcium.
    Triggle CR; Li YQ; Wyse DG
    Proc West Pharmacol Soc; 1992; 35():97-102. PubMed ID: 1502246
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of several potassium channel openers and glibenclamide on the uterus of the rat.
    Piper I; Minshall E; Downing SJ; Hollingsworth M; Sadraei H
    Br J Pharmacol; 1990 Dec; 101(4):901-7. PubMed ID: 2128195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.