These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8864836)

  • 1. Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 A resolution.
    Mizutani H; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Miura R
    J Biochem; 1996 Jul; 120(1):14-7. PubMed ID: 8864836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring.
    Kawazoe T; Tsuge H; Pilone MS; Fukui K
    Protein Sci; 2006 Dec; 15(12):2708-17. PubMed ID: 17088322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate recognition and activation mechanism of D-amino acid oxidase: a study using substrate analogs.
    Nishina Y; Sato K; Miura R; Shiga K
    J Biochem; 2000 Aug; 128(2):213-23. PubMed ID: 10920257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structure of the purple intermediate of porcine kidney D-amino acid oxidase. Optimization of the oxidative half-reaction through alignment of the product with reduced flavin.
    Mizutani H; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Miura R
    J Biochem; 2000 Jul; 128(1):73-81. PubMed ID: 10876160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase.
    Stocker A; Hecht HJ; Bückmann AF
    Eur J Biochem; 1996 Jun; 238(2):519-28. PubMed ID: 8681967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C-NMR studies of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide. Effects of competitive inhibitors.
    Miura R; Miyake Y
    J Biochem; 1987 Mar; 101(3):581-9. PubMed ID: 2885314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the FAD-containing N-methyltryptophan oxidase from Escherichia coli.
    Khanna P; Schuman Jorns M
    Biochemistry; 2001 Feb; 40(5):1441-50. PubMed ID: 11170472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution.
    Vrielink A; Lloyd LF; Blow DM
    J Mol Biol; 1991 Jun; 219(3):533-54. PubMed ID: 2051487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the ligands in charge-transfer complexes of porcine kidney flavoenzyme D-amino acid oxidase in three redox states: a resonance Raman study.
    Nishina Y; Sato K; Shi R; Setoyama C; Miura R; Shiga K
    J Biochem; 2001 Nov; 130(5):637-47. PubMed ID: 11686926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization of expressed porcine kidney D-amino acid oxidase and preliminary X-ray crystallographic characterization.
    Setoyama C; Miura R; Nishina Y; Shiga K; Mizutani H; Miyahara I; Hirotsu K
    J Biochem; 1996 Jun; 119(6):1114-7. PubMed ID: 8827446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide.
    Miura R; Miyake Y
    J Biochem; 1987 Dec; 102(6):1345-54. PubMed ID: 2896189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P219L substitution in human D-amino acid oxidase impacts the ligand binding and catalytic efficiency.
    Rachadech W; Kato Y; Abou El-Magd RM; Shishido Y; Kim SH; Sogabe H; Maita N; Yorita K; Fukui K
    J Biochem; 2020 Nov; 168(5):557-567. PubMed ID: 32730563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human D-amino acid oxidase: an update and review.
    Kawazoe T; Park HK; Iwana S; Tsuge H; Fukui K
    Chem Rec; 2007; 7(5):305-15. PubMed ID: 17924443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2.
    Mattevi A; Vanoni MA; Todone F; Rizzi M; Teplyakov A; Coda A; Bolognesi M; Curti B
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7496-501. PubMed ID: 8755502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostabilization of porcine kidney D-amino acid oxidase by a single amino acid substitution.
    Bakke M; Setoyama C; Miura R; Kajiyama N
    Biotechnol Bioeng; 2006 Apr; 93(5):1023-7. PubMed ID: 16245349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 A resolution. Analysis of the enzyme-substrate and enzyme-product complexes.
    Schreuder HA; Prick PA; Wierenga RK; Vriend G; Wilson KS; Hol WG; Drenth J
    J Mol Biol; 1989 Aug; 208(4):679-96. PubMed ID: 2553983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.