These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8865376)

  • 21. Adenosine modulation of calcium currents in postganglionic neurones of avian cultured ciliary ganglia.
    Bennett MR; Kerr R; Khurana G
    Br J Pharmacol; 1992 May; 106(1):25-32. PubMed ID: 1380383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous DHP-sensitive Ca(2+) channels in Pleurodeles oocytes.
    Ouadid H; Browaeys-Poly E; Vilain JP; Guilbault P
    FEBS Lett; 1994 Aug; 351(1):58-62. PubMed ID: 7521305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased cAMP as a positive inotropic factor for mammalian skeletal muscle in vitro.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2003 Oct; 81(10):986-96. PubMed ID: 14608417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3T3 cells.
    Pemberton KE; Hill-Eubanks LJ; Jones SV
    Pflugers Arch; 2000 Jul; 440(3):452-61. PubMed ID: 10954332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of endothelin-mediated calcium mobilization in vascular smooth muscle cells by isoproterenol.
    Xuan YT; Watkins WD; Whorton AR
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C492-502. PubMed ID: 1706144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genistein directly inhibits L-type calcium currents but potentiates cAMP-dependent chloride currents in cardiomyocytes.
    Chiang CE; Chen SA; Chang MS; Lin CI; Luk HN
    Biochem Biophys Res Commun; 1996 Jun; 223(3):598-603. PubMed ID: 8687442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. cAMP and calcium-dependent mechanisms of phospholamban phosphorylation in intact hearts.
    Vittone L; Mundiña C; Chiappe de Cingolani G; Mattiazzi A
    Am J Physiol; 1990 Feb; 258(2 Pt 2):H318-25. PubMed ID: 1689964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inotropic and calcium kinetic effects of calcium channel agonist and antagonist in isolated cardiac myocytes from cardiomyopathic hamsters.
    Sen LY; O'Neill M; Marsh JD; Smith TW
    Circ Res; 1990 Sep; 67(3):599-608. PubMed ID: 1697792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dihydropyridine-induced Ca2+ release from ryanodine-sensitive Ca2+ pools in human skeletal muscle cells.
    Weigl LG; Hohenegger M; Kress HG
    J Physiol; 2000 Jun; 525 Pt 2(Pt 2):461-9. PubMed ID: 10835047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solutions.
    Aaronson PI; Bolton TB; Lang RJ; MacKenzie I
    J Physiol; 1988 Nov; 405():57-75. PubMed ID: 2475611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single calcium channel behavior in native skeletal muscle.
    Dirksen RT; Beam KG
    J Gen Physiol; 1995 Feb; 105(2):227-47. PubMed ID: 7539048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for an external location of the dihydropyridine agonist receptor site on smooth muscle and skeletal muscle calcium channels.
    Strübing C; Hering S; Glossmann H
    Br J Pharmacol; 1993 Apr; 108(4):884-91. PubMed ID: 7683566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca(2+) channel.
    Avila G; Dirksen RT
    J Gen Physiol; 2000 Apr; 115(4):467-80. PubMed ID: 10736313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line.
    Kasai H; Neher E
    J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Ca2+-activated nonselective cationic currents in rat pituitary GH3 cells: involvement in L-type Ca2+ current.
    Wu SN; Li HF; Jan CR
    Brain Res; 1998 Nov; 812(1-2):133-41. PubMed ID: 9813284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium channel subtypes in cat chromaffin cells.
    Albillos A; Artalejo AR; López MG; Gandía L; García AG; Carbone E
    J Physiol; 1994 Jun; 477(Pt 2):197-213. PubMed ID: 7523660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Re-evaluation of calcium currents in pre- and postsynaptic neurones of the chick ciliary ganglion.
    Yawo H; Momiyama A
    J Physiol; 1993 Jan; 460():153-72. PubMed ID: 7683716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium channel current in cultured rat mesangial cells.
    Nishio M; Tsukahara H; Hiraoka M; Sudo M; Kigoshi S; Muramatsu I
    Mol Pharmacol; 1993 Jan; 43(1):96-9. PubMed ID: 7678693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The regulation of L-type Ca2+ currents in rat cardiac myocytes.
    Markevich NI; Korystova AF; Grichenko AS; Lankina DA; Kokoz YM
    Membr Cell Biol; 2000; 14(1):109-27. PubMed ID: 11051087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.