BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8865559)

  • 1. Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study.
    Wang Y; Fish PJ
    Ultrasound Med Biol; 1996; 22(5):635-49. PubMed ID: 8865559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of time-frequency representation techniques to measure blood flow turbulence with pulsed-wave Doppler ultrasound.
    Cloutier G; Chen D; Durand LG
    Ultrasound Med Biol; 2001 Apr; 27(4):535-50. PubMed ID: 11368865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonstationarity broadening reduction in pulsed Doppler spectrum measurements using time-frequency estimators.
    Cardoso JC; Ruano MG; Fish PJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1176-86. PubMed ID: 9214836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the spectral broadening of simulated Doppler signals using FFT and AR modelling.
    Keeton PI; Schlindwein FS; Evans DH
    Ultrasound Med Biol; 1997; 23(7):1033-45. PubMed ID: 9330447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for Doppler blood flow measurement.
    McNamara DM; Goli A; Ziarani AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1883-5. PubMed ID: 19163056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doppler angle estimation using AR modeling.
    Yeh CK; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):683-92. PubMed ID: 12075962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of short-time spectral parametric methods for reducing the variance of the Doppler ultrasound mean instantaneous frequency estimation.
    Sava H; Durand LG; Cloutier G
    Med Biol Eng Comput; 1999 May; 37(3):291-7. PubMed ID: 10505377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of stenosis and occlusion in arteries with the application of FFT, AR, and ARMA methods.
    Ubeyli ED; Güler I
    J Med Syst; 2003 Apr; 27(2):105-20. PubMed ID: 12617353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning.
    Shioiri K; Saho K
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction for broadening in Doppler blood flow spectrum estimated using wavelet transform.
    Zhang Y; Xu L; Chen J; Ma H; Shi X
    Med Eng Phys; 2006 Jul; 28(6):596-603. PubMed ID: 16256404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doppler angle estimation of pulsatile flows using AR modeling.
    Yeh CK; Li PC
    Ultrason Imaging; 2002 Apr; 24(2):65-80. PubMed ID: 12199419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subspace-Based Blood Power Spectral Capon Combined with Wiener Postfilter to Provide a High-Quality Velocity Waveform with Low Mathematical Complexity.
    Makouei F; Mohammadzadeh Asl B
    Ultrasound Med Biol; 2020 Jul; 46(7):1783-1801. PubMed ID: 32387154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery.
    Guo Z; Durand LG; Lee HC
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):332-42. PubMed ID: 8063299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.
    Herment A; Giovannelli JF
    Ultrason Imaging; 1995 Jan; 17(1):1-26. PubMed ID: 7638930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the blood Doppler frequency shift by a time-varying parametric approach.
    Girault JM; Kouamé D; Ouahabi A; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):682-7. PubMed ID: 10829752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for Doppler frequency analysis that promises a major improvement in performance.
    Vaitkus PJ; Johnston KW; Cobbold RS
    Ann Vasc Surg; 1989 Oct; 3(4):364-9. PubMed ID: 2688733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of method and parameters of spectral analysis on selected indices of simulated Doppler spectra.
    Kaluzynski K; Palko T
    Med Biol Eng Comput; 1993 May; 31(3):249-56. PubMed ID: 8412378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.
    Kathpalia A; Karabiyik Y; Eik-Nes SH; Tegnander E; Ekroll IK; Kiss G; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1825-1838. PubMed ID: 27824563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.