These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8865657)

  • 21. Study of the transient motion in the cochlea.
    Holmes MH
    J Acoust Soc Am; 1981 Mar; 69(3):751-9. PubMed ID: 7240555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical model of an arched basilar membrane in the gerbil cochlea.
    Chan WX; Lee SH; Kim N; Shin CS; Yoon YJ
    Hear Res; 2017 Mar; 345():1-9. PubMed ID: 27986594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX; Yoon YJ
    Hear Res; 2015 Sep; 327():136-42. PubMed ID: 26070425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Quantitative characteristics of the basilar membrane in the mammalian cochlea].
    Prokof'eva LI; Chernyĭ AG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1986; (11):44-50. PubMed ID: 3814661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Frequency properties of a cochlea model].
    Babkina LN; Molchanov AP
    Biofizika; 1974; 19(6):1075-80. PubMed ID: 4441531
    [No Abstract]   [Full Text] [Related]  

  • 27. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hardware cochlear nonlinear preprocessing model with active feedback.
    Zwicker E
    J Acoust Soc Am; 1986 Jul; 80(1):146-53. PubMed ID: 3745660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Oscillations of the internal ear basilar membrane in the sonic and ultrasonic range from the data of mathematical analysis of the hydrodynamic model of the cochlea].
    Sagalovich BM; Krasil'nikov IuI; Burov AV
    Biofizika; 1990; 35(1):124-7. PubMed ID: 2346755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-tone suppression of basilar membrane vibrations in the base of the guinea pig cochlea using "low-side" suppressors.
    Geisler CD; Nuttall AL
    J Acoust Soc Am; 1997 Jul; 102(1):430-40. PubMed ID: 9228805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear and active two-dimensional cochlear models: time-domain solution.
    Diependaal RJ; Viergever MA
    J Acoust Soc Am; 1989 Feb; 85(2):803-12. PubMed ID: 2925995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Longitudinal coupling in the basilar membrane.
    Naidu RC; Mountain DC
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):257-67. PubMed ID: 11669398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models.
    How JA; Elliott SJ; Lineton B
    J Acoust Soc Am; 2010 Feb; 127(2):652-5. PubMed ID: 20136186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An analysis of a low-frequency model of the cochlea.
    Holmes MH
    J Acoust Soc Am; 1980 Aug; 68(2):482-8. PubMed ID: 7419808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between frequency-tuning and spatial-tuning curves in the mammalian cochlea.
    Geisler CD; Cai Y
    J Acoust Soc Am; 1996 Mar; 99(3):1550-5. PubMed ID: 8819851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.