These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 8865815)
1. Glucose transport activity and ligand binding (cytochalasin B, IAPS-forskolin) of chimeric constructs of GLUT2 and GLUT4 expressed in COS-7-cells. Wandel S; Buchs A; Schürmann A; Summers SA; Powers AC; Shanahan MF; Joost HG Biochim Biophys Acta; 1996 Oct; 1284(1):56-62. PubMed ID: 8865815 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine. Hellwig B; Joost HG Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731 [TBL] [Abstract][Full Text] [Related]
3. Mutation of two conserved arginine residues in the glucose transporter GLUT4 supresses transport activity, but not glucose-inhibitable binding of inhibitory ligands. Wandel S; Schurmann A; Becker W; Summers SA; Shanahan MF; Joost HG Naunyn Schmiedebergs Arch Pharmacol; 1995 Dec; 353(1):36-41. PubMed ID: 8750914 [TBL] [Abstract][Full Text] [Related]
4. Substitution of conserved tyrosine residues in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the glucose transporter GLUT4. Wandel S; Schürmann A; Becker W; Summers SA; Shanahan MF; Joost HG FEBS Lett; 1994 Jul; 348(2):114-8. PubMed ID: 8034025 [TBL] [Abstract][Full Text] [Related]
5. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Schürmann A; Doege H; Ohnimus H; Monser V; Buchs A; Joost HG Biochemistry; 1997 Oct; 36(42):12897-902. PubMed ID: 9335548 [TBL] [Abstract][Full Text] [Related]
6. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose. Schürmann A; Keller K; Monden I; Brown FM; Wandel S; Shanahan MF; Joost HG Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):497-501. PubMed ID: 8452538 [TBL] [Abstract][Full Text] [Related]
7. In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle. Ryder JW; Kawano Y; Chibalin AV; Rincón J; Tsao TS; Stenbit AE; Combatsiaris T; Yang J; Holman GD; Charron MJ; Zierath JR Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018 [TBL] [Abstract][Full Text] [Related]
8. Localization of the forskolin photolabelling site within the monosaccharide transporter of human erythrocytes. Wadzinski BE; Shanahan MF; Seamon KB; Ruoho AE Biochem J; 1990 Nov; 272(1):151-8. PubMed ID: 2264820 [TBL] [Abstract][Full Text] [Related]
9. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar. McDonald TP; Walmsley AR; Henderson PJ J Biol Chem; 1997 Jun; 272(24):15189-99. PubMed ID: 9182541 [TBL] [Abstract][Full Text] [Related]
10. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter. Kasahara T; Kasahara M Biochim Biophys Acta; 1997 Feb; 1324(1):111-9. PubMed ID: 9059504 [TBL] [Abstract][Full Text] [Related]
11. Insulin-sensitive targeting of the GLUT4 glucose transporter in L6 myoblasts is conferred by its COOH-terminal cytoplasmic tail. Haney PM; Levy MA; Strube MS; Mueckler M J Cell Biol; 1995 May; 129(3):641-58. PubMed ID: 7730401 [TBL] [Abstract][Full Text] [Related]
12. Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity. Katagiri H; Asano T; Ishihara H; Tsukuda K; Lin JL; Inukai K; Kikuchi M; Yazaki Y; Oka Y J Biol Chem; 1992 Nov; 267(31):22550-5. PubMed ID: 1429604 [TBL] [Abstract][Full Text] [Related]
13. Possible domains responsible for intracellular targeting and insulin-dependent translocation of glucose transporter type 4. Ishii K; Hayashi H; Todaka M; Kamohara S; Kanai F; Jinnouchi H; Wang L; Ebina Y Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):813-23. PubMed ID: 7543750 [TBL] [Abstract][Full Text] [Related]
15. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter. Inukai K; Katagiri H; Takata K; Asano T; Anai M; Ishihara H; Nakazaki M; Kikuchi M; Yazaki Y; Oka Y Endocrinology; 1995 Nov; 136(11):4850-7. PubMed ID: 7588216 [TBL] [Abstract][Full Text] [Related]
16. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Burant CF; Bell GI Biochemistry; 1992 Oct; 31(42):10414-20. PubMed ID: 1420159 [TBL] [Abstract][Full Text] [Related]
17. Evidence that forskolin binds to the glucose transporter of human erythrocytes. Lavis VR; Lee DP; Shenolikar S J Biol Chem; 1987 Oct; 262(30):14571-5. PubMed ID: 3667590 [TBL] [Abstract][Full Text] [Related]
18. Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells. Schürmann A; Monden I; Joost HG; Keller K Biochim Biophys Acta; 1992 Jul; 1131(3):245-52. PubMed ID: 1627641 [TBL] [Abstract][Full Text] [Related]
19. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985 [TBL] [Abstract][Full Text] [Related]
20. Derivatization of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label. Wadzinski BE; Shanahan MF; Ruoho AE J Biol Chem; 1987 Dec; 262(36):17683-9. PubMed ID: 3693367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]