These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8866029)

  • 41. Suturing for surgical success.
    Kurtzman GM; Silverstein LH; Shatz PC; Kurtzman D
    Dent Today; 2005 Oct; 24(10):96-102; quiz 103. PubMed ID: 16277068
    [No Abstract]   [Full Text] [Related]  

  • 42. Resistance to tensile stress of a bioadhesive utilized for medical purposes: Loctite 4011.
    García Páez JM; Jorge Herrero E; Millán I; Rocha A; Maestro M; Castillo-Olivares JL; Carrera Sanmartin A; Cordon A
    J Biomater Appl; 2004 Jan; 18(3):179-92. PubMed ID: 14871044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the force necessary for the propagation of tears in ostrich and calf pericardium.
    García Páez JM; Carrera A; Jorge E; Millán I; Cordón A; Maestro MA; Rocha A; Morales S; Castillo-Olivares JL
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):229-35. PubMed ID: 16637030
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tensile strengths of twelve types of knot employed in surgery, using different suture materials.
    Tera H; Aberg C
    Acta Chir Scand; 1976; 142(1):1-7. PubMed ID: 1266536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [In vitro study of Staphylococcus epidermidis adhesiveness to suture materials].
    Arciola CR; Buscaroli S; Rocca M; Farinetti A; Fini M; Manfrini M; Giardino R
    G Chir; 1990 Mar; 11(3):141-3. PubMed ID: 2223484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of the suture in the propagation of tears in calf pericardium employed in the construction of cardiac bioprostheses.
    Garcia Paez JM; Claramunt R; Millan I; Valdes M; Arriaga Y; Cordon A; Maestro MA; Rocha A; Refusta S; Ros A; Alvarez L; Jorge-Herrero E
    J Appl Biomater Biomech; 2008; 6(1):55-62. PubMed ID: 20740447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A biomechanical analysis of suture materials and their influence on a four-strand flexor tendon repair.
    Lawrence TM; Davis TR
    J Hand Surg Am; 2005 Jul; 30(4):836-41. PubMed ID: 16039381
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative study of the mechanical behaviour of a cyanoacrylate and a bioadhesive.
    García Páez JM; Jorge Herrero E; Rocha A; Maestro M; Castillo-Olivares JL; Millan I; Carrera Sanmartin A; Cordon A
    J Mater Sci Mater Med; 2004 Feb; 15(2):109-15. PubMed ID: 15330043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials.
    Mirnajafi A; Raymer J; Scott MJ; Sacks MS
    Biomaterials; 2005 Mar; 26(7):795-804. PubMed ID: 15350785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tensile strength and failure load of sutures for robotic surgery.
    Abiri A; Paydar O; Tao A; LaRocca M; Liu K; Genovese B; Candler R; Grundfest WS; Dutson EP
    Surg Endosc; 2017 Aug; 31(8):3258-3270. PubMed ID: 27928670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An objective comparison of holding, slippage, and pull-out tensions for eight suspension sutures in the malar fat pads of fresh-frozen human cadavers.
    Sasaki GH; Komorowska-Timek ED; Bennett DC; Gabriel A
    Aesthet Surg J; 2008; 28(4):387-96. PubMed ID: 19083551
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Donkey pericardium as an alternative bioprosthetic heart valve material.
    Chen S; Xu L; Liu Y; Li Q; Wang D; Wang X; Liu T
    Artif Organs; 2013 Mar; 37(3):248-55. PubMed ID: 23145868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local variation in the tearing strength of chemically modified pericardium.
    Crofts CE; Trowbridge EA
    Biomaterials; 1989 May; 10(4):230-4. PubMed ID: 2742950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of suture materials: an important characterization.
    Chu CC
    Ann Surg; 1981 Mar; 193(3):365-71. PubMed ID: 6260044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The choice of a suture to close abdominal incisions.
    Bucknall TE; Teare L; Ellis H
    Eur Surg Res; 1983; 15(2):59-66. PubMed ID: 6303791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping of bovine pericardium: physical and histopathologic tests.
    Braile DM; Soares MJ; Souza DR; Ramirez VD; Suzigan S; Godoy MF
    J Heart Valve Dis; 1998 Mar; 7(2):202-6. PubMed ID: 9587862
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of surgical suture materials using dynamic mechanical analysis.
    von Fraunhofer JA; Sichina WJ
    Biomaterials; 1992; 13(10):715-20. PubMed ID: 1420718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of Marlex and Gore-tex to repair abdominal wall defects in the rat.
    Murphy JL; Freeman JB; Dionne PG
    Can J Surg; 1989 Jul; 32(4):244-7. PubMed ID: 2736451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.