These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8866047)
1. Sensitivity constraints in a chemical/biochemical highly responsive system. Acerenza L Biosystems; 1996; 39(2):109-16. PubMed ID: 8866047 [TBL] [Abstract][Full Text] [Related]
2. Evolution of enzyme catalytic power. Characteristics of optimal catalysis evaluated for the simplest plausible kinetic model. Brocklehurst K Biochem J; 1977 Apr; 163(1):111-6. PubMed ID: 869911 [TBL] [Abstract][Full Text] [Related]
3. Optimization of biochemical systems by linear programming and general mass action model representations. Marín-Sanguino A; Torres NV Math Biosci; 2003 Aug; 184(2):187-200. PubMed ID: 12832147 [TBL] [Abstract][Full Text] [Related]
4. The total quasi-steady-state approximation is valid for reversible enzyme kinetics. Tzafriri AR; Edelman ER J Theor Biol; 2004 Feb; 226(3):303-13. PubMed ID: 14643644 [TBL] [Abstract][Full Text] [Related]
5. Relations between biochemical thermodynamics and biochemical kinetics. Alberty RA Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115 [TBL] [Abstract][Full Text] [Related]
6. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis. Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782 [TBL] [Abstract][Full Text] [Related]
7. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Elsner M; Zwank L; Hunkeler D; Schwarzenbach RP Environ Sci Technol; 2005 Sep; 39(18):6896-916. PubMed ID: 16201610 [TBL] [Abstract][Full Text] [Related]
8. Selection between multiple periodic regimes in a biochemical system: complex dynamic behaviour resolved by use of one-dimensional maps. Decroly O; Goldbeter A J Theor Biol; 1985 Apr; 113(4):649-71. PubMed ID: 4033147 [TBL] [Abstract][Full Text] [Related]
9. Kinetic constraints for formation of steady states in biochemical networks. Liu J Biophys J; 2005 May; 88(5):3212-23. PubMed ID: 15731381 [TBL] [Abstract][Full Text] [Related]
10. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis. Mayr P; Nidetzky B Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638 [TBL] [Abstract][Full Text] [Related]
11. Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. Sorribas A; Savageau MA Math Biosci; 1989 Jun; 94(2):239-69. PubMed ID: 2520170 [TBL] [Abstract][Full Text] [Related]
12. Chemical reaction network approaches to Biochemical Systems Theory. Arceo CP; Jose EC; Marin-Sanguino A; Mendoza ER Math Biosci; 2015 Nov; 269():135-52. PubMed ID: 26363083 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type. Yamaguchi M; Tonomura Y J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933 [TBL] [Abstract][Full Text] [Related]
14. Design of large metabolic responses. Constraints and sensitivity analysis. Acerenza L J Theor Biol; 2000 Nov; 207(2):265-82. PubMed ID: 11034833 [TBL] [Abstract][Full Text] [Related]
15. Components and coupling in enzyme-catalyzed reactions. Alberty RA J Phys Chem B; 2005 Feb; 109(5):2021-6. PubMed ID: 16851187 [TBL] [Abstract][Full Text] [Related]
16. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range. Li Z; Sau AK; Furdui CM; Anderson KS Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047 [TBL] [Abstract][Full Text] [Related]
18. Kinetic cooperativity in the concerted model for allosteric enzymes. Goldbeter A Biophys Chem; 1976 Mar; 4(2):159-69. PubMed ID: 1260097 [TBL] [Abstract][Full Text] [Related]
19. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. Savageau MA J Theor Biol; 1969 Dec; 25(3):370-9. PubMed ID: 5387047 [No Abstract] [Full Text] [Related]
20. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B; Klimacek M; Mayr P Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]