These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 8867119)

  • 61. N-methyl-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord.
    Hochman S; Jordan LM; MacDonald JF
    J Neurophysiol; 1994 Aug; 72(2):565-77. PubMed ID: 7983519
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator.
    Sherwood WE; Harris-Warrick R; Guckenheimer J
    J Comput Neurosci; 2011 Apr; 30(2):323-60. PubMed ID: 20644988
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate.
    Lansner A; Kotaleski JH; Grillner S
    Ann N Y Acad Sci; 1998 Nov; 860():239-49. PubMed ID: 9928316
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling of lamprey reticulospinal neurons: multiple distinct parameter sets yield realistic simulations.
    Ruffolo JA; McClellan AD
    J Neurophysiol; 2020 Sep; 124(3):895-913. PubMed ID: 32697608
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modeling alternation to synchrony with inhibitory coupling: a neuromorphic VLSI approach.
    Cymbalyuk GS; Patel GN; Calabrese RL; DeWeerth SP; Cohen AH
    Neural Comput; 2000 Oct; 12(10):2259-78. PubMed ID: 11032033
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey.
    Ohta Y; Grillner S
    J Neurophysiol; 1989 Nov; 62(5):1079-89. PubMed ID: 2555456
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network.
    Rowat PF; Selverston AI
    J Neurophysiol; 1993 Sep; 70(3):1030-53. PubMed ID: 8229158
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A synaptic mechanism for network synchrony.
    Alford ST; Alpert MH
    Front Cell Neurosci; 2014; 8():290. PubMed ID: 25278839
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Vestibulo-reticular projections in adult lamprey: their role in locomotion.
    Pflieger JF; Dubuc R
    Neuroscience; 2004; 129(3):817-29. PubMed ID: 15541903
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A multivariate population density model of the dLGN/PGN relay.
    Huertas MA; Smith GD
    J Comput Neurosci; 2006 Oct; 21(2):171-89. PubMed ID: 16788765
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling.
    Bondarenko VE; Cymbalyuk GS; Patel G; Deweerth SP; Calabrese RL
    Chaos; 2004 Dec; 14(4):995-1003. PubMed ID: 15568913
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Activity of individual reticulospinal neurons during different forms of locomotion in the lamprey.
    Zelenin PV
    Eur J Neurosci; 2005 Nov; 22(9):2271-82. PubMed ID: 16262665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mathematical analysis and simulations of the neural circuit for locomotion in lampreys.
    Zhaoping L; Lewis A; Scarpetta S
    Phys Rev Lett; 2004 May; 92(19):198106. PubMed ID: 15169452
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simple models for excitable and oscillatory neural networks.
    Taylor D; Holmes P
    J Math Biol; 1998 Nov; 37(5):419-46. PubMed ID: 9836466
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.
    Molkov YI; Bacak BJ; Talpalar AE; Rybak IA
    PLoS Comput Biol; 2015 May; 11(5):e1004270. PubMed ID: 25970489
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Excitatory motor neurons are local oscillators for backward locomotion.
    Gao S; Guan SA; Fouad AD; Meng J; Kawano T; Huang YC; Li Y; Alcaire S; Hung W; Lu Y; Qi YB; Jin Y; Alkema M; Fang-Yen C; Zhen M
    Elife; 2018 Jan; 7():. PubMed ID: 29360035
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Variability analyses suggest that supraspino-spinal interactions provide dynamic stability in motor control.
    Wang H; Jung R
    Brain Res; 2002 Mar; 930(1-2):83-100. PubMed ID: 11879799
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Parametric modeling of the temporal dynamics of neuronal responses using connectionist architectures.
    Bankes SC; Margoliash D
    J Neurophysiol; 1993 Mar; 69(3):980-91. PubMed ID: 8385204
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatial firing patterns of auditory neuron network modelling by computer simulation.
    Nomoto M
    Biol Cybern; 1979 May; 32(4):227-37. PubMed ID: 222354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.